利用插值小波捕捉冲击

C. Cunha, S. Gomes
{"title":"利用插值小波捕捉冲击","authors":"C. Cunha, S. Gomes","doi":"10.1109/MWSCAS.1995.510292","DOIUrl":null,"url":null,"abstract":"In this paper we discuss an adaptive method for the computation of discontinuous solutions of hyperbolic conservation laws. In each time level we use techniques coming from interpolatory multiresolution analyses for detecting discontinuities of the solution. The adaptive scheme uses first order upwind flux computation in the immediate neighbourhood of these irregularities. Since the differential equation holds in the smoothness domain, we follow the characteristics in the time marching procedure at grid points in that domain.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shock capturing using interpolatory wavelets\",\"authors\":\"C. Cunha, S. Gomes\",\"doi\":\"10.1109/MWSCAS.1995.510292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss an adaptive method for the computation of discontinuous solutions of hyperbolic conservation laws. In each time level we use techniques coming from interpolatory multiresolution analyses for detecting discontinuities of the solution. The adaptive scheme uses first order upwind flux computation in the immediate neighbourhood of these irregularities. Since the differential equation holds in the smoothness domain, we follow the characteristics in the time marching procedure at grid points in that domain.\",\"PeriodicalId\":165081,\"journal\":{\"name\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1995.510292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.510292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了双曲型守恒律不连续解的一种自适应计算方法。在每个时间水平上,我们使用来自插值多分辨率分析的技术来检测解决方案的不连续性。自适应方案采用一阶迎风通量计算这些不规则区域的邻域。由于微分方程在光滑域内成立,因此我们遵循该域内网格点的时间推进过程中的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shock capturing using interpolatory wavelets
In this paper we discuss an adaptive method for the computation of discontinuous solutions of hyperbolic conservation laws. In each time level we use techniques coming from interpolatory multiresolution analyses for detecting discontinuities of the solution. The adaptive scheme uses first order upwind flux computation in the immediate neighbourhood of these irregularities. Since the differential equation holds in the smoothness domain, we follow the characteristics in the time marching procedure at grid points in that domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信