使用蒙特卡罗模拟SEM和AFM图像的精细配准

C. Geldmann
{"title":"使用蒙特卡罗模拟SEM和AFM图像的精细配准","authors":"C. Geldmann","doi":"10.1109/CoASE.2013.6653991","DOIUrl":null,"url":null,"abstract":"For the characterization of objects on the micro-and nanoscale scanning electron microscopy (SEM) and atomic force microscopy (AFM) are common imaging techniques. Due to the different technical approaches of both methods they provide different information about the sample so a fusion of AFM and SEM images into a single image is beneficial. As SEM and AFM images show a number of individual effects like edge effects in SEM and tip convolution in AFM existing algorithms for multi-modal image registration can only yield a coarse transformation between an AFM and an SEM image of the same scene. Fine registration describes the process of finding an optimal transformation between images which therefore is a difficult task for AFM and SEM images. This paper shows a technique for enhancing AFM/SEM fine registration results using Monte Carlo simulations of SEM images. It is shown that based on an AFM image representing the height profile of a virtual material surface the output of an SEM simulation can be fine registered with the original SEM image to gain a clearly enhanced transformation between the AFM and SEM image.","PeriodicalId":191166,"journal":{"name":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fine registration of SEM and AFM images using Monte Carlo simulations\",\"authors\":\"C. Geldmann\",\"doi\":\"10.1109/CoASE.2013.6653991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the characterization of objects on the micro-and nanoscale scanning electron microscopy (SEM) and atomic force microscopy (AFM) are common imaging techniques. Due to the different technical approaches of both methods they provide different information about the sample so a fusion of AFM and SEM images into a single image is beneficial. As SEM and AFM images show a number of individual effects like edge effects in SEM and tip convolution in AFM existing algorithms for multi-modal image registration can only yield a coarse transformation between an AFM and an SEM image of the same scene. Fine registration describes the process of finding an optimal transformation between images which therefore is a difficult task for AFM and SEM images. This paper shows a technique for enhancing AFM/SEM fine registration results using Monte Carlo simulations of SEM images. It is shown that based on an AFM image representing the height profile of a virtual material surface the output of an SEM simulation can be fine registered with the original SEM image to gain a clearly enhanced transformation between the AFM and SEM image.\",\"PeriodicalId\":191166,\"journal\":{\"name\":\"2013 IEEE International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoASE.2013.6653991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoASE.2013.6653991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

扫描电子显微镜(SEM)和原子力显微镜(AFM)是表征微观和纳米尺度上物体的常用成像技术。由于两种方法的技术方法不同,它们提供了关于样品的不同信息,因此将AFM和SEM图像融合成单个图像是有益的。由于SEM和AFM图像显示出许多单独的效果,如SEM中的边缘效应和AFM中的尖端卷积,现有的多模态图像配准算法只能在同一场景的AFM和SEM图像之间产生粗变换。精细配准描述了在图像之间寻找最佳转换的过程,因此对于AFM和SEM图像来说是一项困难的任务。本文介绍了一种利用蒙特卡罗模拟SEM图像来增强AFM/SEM精细配准结果的技术。结果表明,基于代表虚拟材料表面高度轮廓的AFM图像,SEM模拟输出可以与原始SEM图像进行精细配准,从而在AFM和SEM图像之间获得明显增强的转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine registration of SEM and AFM images using Monte Carlo simulations
For the characterization of objects on the micro-and nanoscale scanning electron microscopy (SEM) and atomic force microscopy (AFM) are common imaging techniques. Due to the different technical approaches of both methods they provide different information about the sample so a fusion of AFM and SEM images into a single image is beneficial. As SEM and AFM images show a number of individual effects like edge effects in SEM and tip convolution in AFM existing algorithms for multi-modal image registration can only yield a coarse transformation between an AFM and an SEM image of the same scene. Fine registration describes the process of finding an optimal transformation between images which therefore is a difficult task for AFM and SEM images. This paper shows a technique for enhancing AFM/SEM fine registration results using Monte Carlo simulations of SEM images. It is shown that based on an AFM image representing the height profile of a virtual material surface the output of an SEM simulation can be fine registered with the original SEM image to gain a clearly enhanced transformation between the AFM and SEM image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信