流量预测机器学习模型的性能比较

José Fernando de Toledo, Patrícia Teixeira Leite Assano, H. Siqueira, R. Sacchi
{"title":"流量预测机器学习模型的性能比较","authors":"José Fernando de Toledo, Patrícia Teixeira Leite Assano, H. Siqueira, R. Sacchi","doi":"10.1109/LA-CCI48322.2021.9769829","DOIUrl":null,"url":null,"abstract":"In this work, the performance of three models for streamflow forecasting is compared, based on six scenarios that considered the phases of El Niño South Oscillation (ENSO) and Climate Indicators, for eight hydroelectric plants located in four regions of the Brazilian territory. The models addressed are Support Vector Regression, Extreme Learning Machine and Kernel Ridge Regression. The climatic variables used are the rainfall, the location of the Intertropical Convergence Zone (ITCZ) and occurrence data from the South Atlantic Convergence Zone (SACZ). The criterion for comparing the models considered the means and variances of the series of forecast errors for each Plant. The computational results indicated that the Kernel Ridge Regression model obtained the best results in most of the tested scenarios, including those that considered the use of Climate Indicators.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance comparison of machine learning models for streamflow forecasting\",\"authors\":\"José Fernando de Toledo, Patrícia Teixeira Leite Assano, H. Siqueira, R. Sacchi\",\"doi\":\"10.1109/LA-CCI48322.2021.9769829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the performance of three models for streamflow forecasting is compared, based on six scenarios that considered the phases of El Niño South Oscillation (ENSO) and Climate Indicators, for eight hydroelectric plants located in four regions of the Brazilian territory. The models addressed are Support Vector Regression, Extreme Learning Machine and Kernel Ridge Regression. The climatic variables used are the rainfall, the location of the Intertropical Convergence Zone (ITCZ) and occurrence data from the South Atlantic Convergence Zone (SACZ). The criterion for comparing the models considered the means and variances of the series of forecast errors for each Plant. The computational results indicated that the Kernel Ridge Regression model obtained the best results in most of the tested scenarios, including those that considered the use of Climate Indicators.\",\"PeriodicalId\":431041,\"journal\":{\"name\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI48322.2021.9769829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,基于El Niño南方涛动(ENSO)阶段和气候指标的六种情景,对位于巴西领土四个地区的八个水力发电厂的三种流量预测模型的性能进行了比较。讨论的模型有支持向量回归、极限学习机和核岭回归。使用的气候变量是降雨、热带辐合带(ITCZ)的位置和南大西洋辐合带(SACZ)的发生数据。比较模型的标准考虑了每个工厂一系列预测误差的均值和方差。计算结果表明,核岭回归模型在大多数测试情景下获得了最好的结果,包括考虑使用气候指标的情景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance comparison of machine learning models for streamflow forecasting
In this work, the performance of three models for streamflow forecasting is compared, based on six scenarios that considered the phases of El Niño South Oscillation (ENSO) and Climate Indicators, for eight hydroelectric plants located in four regions of the Brazilian territory. The models addressed are Support Vector Regression, Extreme Learning Machine and Kernel Ridge Regression. The climatic variables used are the rainfall, the location of the Intertropical Convergence Zone (ITCZ) and occurrence data from the South Atlantic Convergence Zone (SACZ). The criterion for comparing the models considered the means and variances of the series of forecast errors for each Plant. The computational results indicated that the Kernel Ridge Regression model obtained the best results in most of the tested scenarios, including those that considered the use of Climate Indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信