基于Sentinel-2影像的Falcata人工林最大熵映射方法

Marcia Coleen N. Marcial, J. R. Santillan
{"title":"基于Sentinel-2影像的Falcata人工林最大熵映射方法","authors":"Marcia Coleen N. Marcial, J. R. Santillan","doi":"10.1109/TENCON50793.2020.9293693","DOIUrl":null,"url":null,"abstract":"Mapping tree species is essential for monitoring, planning, and better managing industrial tree plantations (ITP). Due to the intensive procedure of field sampling and multi-class manual training data collection for image classification, an approach that allows fewer data would be efficient. This study evaluated the performance of a one-class classifier called Maximum Entropy (MaxEnt) for mapping Falcata (Paraserianthes falcataria) in Sentinel-2 imagery. Two MaxEnt parameters were tested, namely sample size and binary threshold. Using a default threshold of 0.5, MaxEnt can provide classification accuracies ranging from 89.41-92.84% using sample sizes as small as 30 and as high as 500. A 0.3 binary threshold applied to MaxEnt logistic output with 500 samples were the best parameter values for classifying Falcata using Sentinel-2 imagery.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Maximum Entropy Approach for Mapping Falcata Plantations in Sentinel-2 Imagery\",\"authors\":\"Marcia Coleen N. Marcial, J. R. Santillan\",\"doi\":\"10.1109/TENCON50793.2020.9293693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mapping tree species is essential for monitoring, planning, and better managing industrial tree plantations (ITP). Due to the intensive procedure of field sampling and multi-class manual training data collection for image classification, an approach that allows fewer data would be efficient. This study evaluated the performance of a one-class classifier called Maximum Entropy (MaxEnt) for mapping Falcata (Paraserianthes falcataria) in Sentinel-2 imagery. Two MaxEnt parameters were tested, namely sample size and binary threshold. Using a default threshold of 0.5, MaxEnt can provide classification accuracies ranging from 89.41-92.84% using sample sizes as small as 30 and as high as 500. A 0.3 binary threshold applied to MaxEnt logistic output with 500 samples were the best parameter values for classifying Falcata using Sentinel-2 imagery.\",\"PeriodicalId\":283131,\"journal\":{\"name\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON50793.2020.9293693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

绘制树种分布图对于监测、规划和更好地管理工业人工林(ITP)至关重要。由于图像分类需要大量的现场采样和多类人工训练数据的收集,因此允许较少数据的方法将是有效的。本研究评估了一种称为最大熵(MaxEnt)的单类分类器在Sentinel-2图像中绘制Falcata (Paraserianthes falcataria)的性能。测试了两个MaxEnt参数,即样本量和二值阈值。使用默认阈值0.5,MaxEnt可以提供89.41-92.84%的分类准确率,样本大小可以小至30,大至500。使用Sentinel-2图像对500个样本的MaxEnt logistic输出应用0.3的二值阈值是对Falcata进行分类的最佳参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Maximum Entropy Approach for Mapping Falcata Plantations in Sentinel-2 Imagery
Mapping tree species is essential for monitoring, planning, and better managing industrial tree plantations (ITP). Due to the intensive procedure of field sampling and multi-class manual training data collection for image classification, an approach that allows fewer data would be efficient. This study evaluated the performance of a one-class classifier called Maximum Entropy (MaxEnt) for mapping Falcata (Paraserianthes falcataria) in Sentinel-2 imagery. Two MaxEnt parameters were tested, namely sample size and binary threshold. Using a default threshold of 0.5, MaxEnt can provide classification accuracies ranging from 89.41-92.84% using sample sizes as small as 30 and as high as 500. A 0.3 binary threshold applied to MaxEnt logistic output with 500 samples were the best parameter values for classifying Falcata using Sentinel-2 imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信