新weibull-g分布族的拟合优度检验

K.K. Meribout, N. Seddik-Ameur, H. Goual
{"title":"新weibull-g分布族的拟合优度检验","authors":"K.K. Meribout, N. Seddik-Ameur, H. Goual","doi":"10.37418/amsj.12.1.15","DOIUrl":null,"url":null,"abstract":"In this paper, we present two New models named New-Weibull-Weibull ($NWW$) and New-Weibull-Rayleigh ($NWR$) from The New-Wei- bull-G family recently introduced that can have a variety of hazard rate shapes that allows to describe observations from different fields of study. The unknown parameters of the $NWW$ and $NWR$ models have been estimated under the maximum likelihood estimation method. Moreover, we construct a modified chi-squared goodness-of-fit test based on the \\textit{Nikulin– Rao–Robson} ($NRR$) statistic to verify the applicability of the proposed $NWW$ and $NWR$ models. The modified test shows that the models studied can be used as a good candidate for analyzing a large variety of real phenomena. The $NWW$ and $NWR$ models are applied upon a five different real complete and right-censored data sets in order to evaluate its practicability and flexibility.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GOODNESS-OF-FIT TESTS FOR THE NEW WEIBULL-G FAMILY OF DISTRIBUTIONS\",\"authors\":\"K.K. Meribout, N. Seddik-Ameur, H. Goual\",\"doi\":\"10.37418/amsj.12.1.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present two New models named New-Weibull-Weibull ($NWW$) and New-Weibull-Rayleigh ($NWR$) from The New-Wei- bull-G family recently introduced that can have a variety of hazard rate shapes that allows to describe observations from different fields of study. The unknown parameters of the $NWW$ and $NWR$ models have been estimated under the maximum likelihood estimation method. Moreover, we construct a modified chi-squared goodness-of-fit test based on the \\\\textit{Nikulin– Rao–Robson} ($NRR$) statistic to verify the applicability of the proposed $NWW$ and $NWR$ models. The modified test shows that the models studied can be used as a good candidate for analyzing a large variety of real phenomena. The $NWW$ and $NWR$ models are applied upon a five different real complete and right-censored data sets in order to evaluate its practicability and flexibility.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.1.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了两个新模型,分别名为New- weibull - weibull ($NWW$)和New- weibull - rayleigh ($NWR$),它们来自最近推出的New- wei - bull-G家族,可以有各种各样的危险率形状,可以描述来自不同研究领域的观察结果。利用极大似然估计方法对$NWW$和$NWR$模型的未知参数进行了估计。此外,我们基于\textit{Nikulin - Rao-Robson} ($NRR$)统计量构建了一个修正的卡方拟合优度检验,以验证所提出的$NWW$和$NWR$模型的适用性。修正后的试验表明,所研究的模型可以作为分析大量实际现象的良好候选模型。将$NWW$和$NWR$模型应用于五个不同的真实完整和右删减数据集,以评估其实用性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GOODNESS-OF-FIT TESTS FOR THE NEW WEIBULL-G FAMILY OF DISTRIBUTIONS
In this paper, we present two New models named New-Weibull-Weibull ($NWW$) and New-Weibull-Rayleigh ($NWR$) from The New-Wei- bull-G family recently introduced that can have a variety of hazard rate shapes that allows to describe observations from different fields of study. The unknown parameters of the $NWW$ and $NWR$ models have been estimated under the maximum likelihood estimation method. Moreover, we construct a modified chi-squared goodness-of-fit test based on the \textit{Nikulin– Rao–Robson} ($NRR$) statistic to verify the applicability of the proposed $NWW$ and $NWR$ models. The modified test shows that the models studied can be used as a good candidate for analyzing a large variety of real phenomena. The $NWW$ and $NWR$ models are applied upon a five different real complete and right-censored data sets in order to evaluate its practicability and flexibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信