TensorSplat:及时发现潜在的异常

Danai Koutra, E. Papalexakis, C. Faloutsos
{"title":"TensorSplat:及时发现潜在的异常","authors":"Danai Koutra, E. Papalexakis, C. Faloutsos","doi":"10.1109/PCI.2012.60","DOIUrl":null,"url":null,"abstract":"How can we spot anomalies in large, time-evolving graphs? When we have multi-aspect data, e.g. who published which paper on which conference and on what year, how can we combine this information, in order to obtain good summaries thereof and unravel hidden anomalies and patterns? Such multi-aspect data, including time-evolving graphs, can be successfully modelled using Tensors. In this paper, we show that when we have multiple dimensions in the dataset, then tensor analysis is a powerful and promising tool. Our method TENSORSPLAT, at the heart of which lies the \"PARAFAC\" decomposition method, can give good insights about the large networks that are of interest nowadays, and contributes to spotting micro-clusters, changes and, in general, anomalies. We report extensive experiments on a variety of datasets (co-authorship network, time-evolving DBLP network, computer network and Facebook wall posts) and show how tensors can be proved useful in detecting \"strange\" behaviors.","PeriodicalId":131195,"journal":{"name":"2012 16th Panhellenic Conference on Informatics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"TensorSplat: Spotting Latent Anomalies in Time\",\"authors\":\"Danai Koutra, E. Papalexakis, C. Faloutsos\",\"doi\":\"10.1109/PCI.2012.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How can we spot anomalies in large, time-evolving graphs? When we have multi-aspect data, e.g. who published which paper on which conference and on what year, how can we combine this information, in order to obtain good summaries thereof and unravel hidden anomalies and patterns? Such multi-aspect data, including time-evolving graphs, can be successfully modelled using Tensors. In this paper, we show that when we have multiple dimensions in the dataset, then tensor analysis is a powerful and promising tool. Our method TENSORSPLAT, at the heart of which lies the \\\"PARAFAC\\\" decomposition method, can give good insights about the large networks that are of interest nowadays, and contributes to spotting micro-clusters, changes and, in general, anomalies. We report extensive experiments on a variety of datasets (co-authorship network, time-evolving DBLP network, computer network and Facebook wall posts) and show how tensors can be proved useful in detecting \\\"strange\\\" behaviors.\",\"PeriodicalId\":131195,\"journal\":{\"name\":\"2012 16th Panhellenic Conference on Informatics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 16th Panhellenic Conference on Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCI.2012.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th Panhellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCI.2012.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

我们如何在大的、随时间变化的图表中发现异常?当我们有多方面的数据时,例如谁在哪个会议、哪个年份发表了哪篇论文,我们如何将这些信息结合起来,以获得良好的总结,并揭示隐藏的异常和模式?这种多方面的数据,包括时间演化图,可以成功地使用张量建模。在本文中,我们证明了当我们在数据集中有多个维度时,张量分析是一个强大而有前途的工具。我们的方法TENSORSPLAT,其核心是“PARAFAC”分解方法,可以很好地了解当今人们感兴趣的大型网络,并有助于发现微集群、变化和一般情况下的异常。我们报告了在各种数据集(合著网络,时间进化DBLP网络,计算机网络和Facebook墙上帖子)上进行的广泛实验,并展示了张量如何在检测“奇怪”行为方面被证明是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TensorSplat: Spotting Latent Anomalies in Time
How can we spot anomalies in large, time-evolving graphs? When we have multi-aspect data, e.g. who published which paper on which conference and on what year, how can we combine this information, in order to obtain good summaries thereof and unravel hidden anomalies and patterns? Such multi-aspect data, including time-evolving graphs, can be successfully modelled using Tensors. In this paper, we show that when we have multiple dimensions in the dataset, then tensor analysis is a powerful and promising tool. Our method TENSORSPLAT, at the heart of which lies the "PARAFAC" decomposition method, can give good insights about the large networks that are of interest nowadays, and contributes to spotting micro-clusters, changes and, in general, anomalies. We report extensive experiments on a variety of datasets (co-authorship network, time-evolving DBLP network, computer network and Facebook wall posts) and show how tensors can be proved useful in detecting "strange" behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信