基于复值拉普拉斯的时滞多智能体系统事件触发编队控制

W. Cao, Wei Zhu
{"title":"基于复值拉普拉斯的时滞多智能体系统事件触发编队控制","authors":"W. Cao, Wei Zhu","doi":"10.1109/ISASS.2019.8757698","DOIUrl":null,"url":null,"abstract":"Formation problem of first-order multi-agent systems is considered via complex-valued Laplacian. The event-triggered controller with time delay is designed for each agent. Formation can reach specific but arbitrary formation shape for some time delays under the assumption that the interconnection graph of the multi-agent systems is 2-rooted. Furthermore, the Zeno-behavior is excluded for the closed-loop system. Finally, a simulation example is given to illustrate the efficiency of the proposed results.","PeriodicalId":359959,"journal":{"name":"2019 3rd International Symposium on Autonomous Systems (ISAS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Event-triggered Formation Control of Multi-agent Systems with Time Delay via Complex-valued Laplacian\",\"authors\":\"W. Cao, Wei Zhu\",\"doi\":\"10.1109/ISASS.2019.8757698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formation problem of first-order multi-agent systems is considered via complex-valued Laplacian. The event-triggered controller with time delay is designed for each agent. Formation can reach specific but arbitrary formation shape for some time delays under the assumption that the interconnection graph of the multi-agent systems is 2-rooted. Furthermore, the Zeno-behavior is excluded for the closed-loop system. Finally, a simulation example is given to illustrate the efficiency of the proposed results.\",\"PeriodicalId\":359959,\"journal\":{\"name\":\"2019 3rd International Symposium on Autonomous Systems (ISAS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Symposium on Autonomous Systems (ISAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISASS.2019.8757698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISASS.2019.8757698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用复值拉普拉斯算子研究一阶多智能体系统的形成问题。针对每个agent设计了带有时滞的事件触发控制器。假设多智能体系统的连接图是2根的,在一定的时间延迟下,队形可以达到特定但任意的队形。此外,对于闭环系统,不考虑芝诺行为。最后,通过仿真实例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-triggered Formation Control of Multi-agent Systems with Time Delay via Complex-valued Laplacian
Formation problem of first-order multi-agent systems is considered via complex-valued Laplacian. The event-triggered controller with time delay is designed for each agent. Formation can reach specific but arbitrary formation shape for some time delays under the assumption that the interconnection graph of the multi-agent systems is 2-rooted. Furthermore, the Zeno-behavior is excluded for the closed-loop system. Finally, a simulation example is given to illustrate the efficiency of the proposed results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信