脑卒中预测的机器学习方法研究

Alina Faskhutdinova, Daria Grigorieva, Bulat Garafutdinov, V. Mokshin
{"title":"脑卒中预测的机器学习方法研究","authors":"Alina Faskhutdinova, Daria Grigorieva, Bulat Garafutdinov, V. Mokshin","doi":"10.1109/ITNT57377.2023.10139121","DOIUrl":null,"url":null,"abstract":"This article discusses methods for predicting stroke. It has been shown that there are different methods for solving the problem. The article presents a description of the developed model for predicting the likelihood of stroke. The system allows for a quick diagnosis of this disease based on a small number of input parameters. Several methods for implementing machine learning have been considered. The method of support vectors SVM (Support Vector Machine) was taken as a basis.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Machine Learning Methods for Stroke Prediction\",\"authors\":\"Alina Faskhutdinova, Daria Grigorieva, Bulat Garafutdinov, V. Mokshin\",\"doi\":\"10.1109/ITNT57377.2023.10139121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article discusses methods for predicting stroke. It has been shown that there are different methods for solving the problem. The article presents a description of the developed model for predicting the likelihood of stroke. The system allows for a quick diagnosis of this disease based on a small number of input parameters. Several methods for implementing machine learning have been considered. The method of support vectors SVM (Support Vector Machine) was taken as a basis.\",\"PeriodicalId\":296438,\"journal\":{\"name\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNT57377.2023.10139121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了中风的预测方法。已经证明解决这个问题有不同的方法。本文介绍了预测中风可能性的发展模型的描述。该系统允许基于少量输入参数对这种疾病进行快速诊断。本文考虑了几种实现机器学习的方法。以支持向量机(support Vector Machine, SVM)方法为基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Machine Learning Methods for Stroke Prediction
This article discusses methods for predicting stroke. It has been shown that there are different methods for solving the problem. The article presents a description of the developed model for predicting the likelihood of stroke. The system allows for a quick diagnosis of this disease based on a small number of input parameters. Several methods for implementing machine learning have been considered. The method of support vectors SVM (Support Vector Machine) was taken as a basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信