{"title":"基于穿戴式传感器的肌电信号分类的深度神经网络","authors":"Ying Chang, Lan Wang, Lingjie Lin, Ming Liu","doi":"10.4018/ijdst.307988","DOIUrl":null,"url":null,"abstract":"The human-computer interaction has been widely used in many fields, such intelligent prosthetic control, sports medicine, rehabilitation medicine, and clinical medicine. It has gradually become a research focus of social scientists. In the field of intelligent prosthesis, sEMG signal has become the most widely used control signal source because it is easy to obtain. The off-line sEMG control intelligent prosthesis needs to recognize the gestures to execute associated action. In order solve this issue, this paper adopts a CNN plus BiLSTM to automatically extract sEMG features and recognize the gestures. The CNN plus BiLSTM can overcome the drawbacks in the manual feature extraction methods. The experimental results show that the proposed gesture recognition framework can extract overall gesture features, which can improve the recognition rate.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Neural Network for Electromyography Signal Classification via Wearable Sensors\",\"authors\":\"Ying Chang, Lan Wang, Lingjie Lin, Ming Liu\",\"doi\":\"10.4018/ijdst.307988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human-computer interaction has been widely used in many fields, such intelligent prosthetic control, sports medicine, rehabilitation medicine, and clinical medicine. It has gradually become a research focus of social scientists. In the field of intelligent prosthesis, sEMG signal has become the most widely used control signal source because it is easy to obtain. The off-line sEMG control intelligent prosthesis needs to recognize the gestures to execute associated action. In order solve this issue, this paper adopts a CNN plus BiLSTM to automatically extract sEMG features and recognize the gestures. The CNN plus BiLSTM can overcome the drawbacks in the manual feature extraction methods. The experimental results show that the proposed gesture recognition framework can extract overall gesture features, which can improve the recognition rate.\",\"PeriodicalId\":118536,\"journal\":{\"name\":\"Int. J. Distributed Syst. Technol.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Distributed Syst. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdst.307988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdst.307988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Neural Network for Electromyography Signal Classification via Wearable Sensors
The human-computer interaction has been widely used in many fields, such intelligent prosthetic control, sports medicine, rehabilitation medicine, and clinical medicine. It has gradually become a research focus of social scientists. In the field of intelligent prosthesis, sEMG signal has become the most widely used control signal source because it is easy to obtain. The off-line sEMG control intelligent prosthesis needs to recognize the gestures to execute associated action. In order solve this issue, this paper adopts a CNN plus BiLSTM to automatically extract sEMG features and recognize the gestures. The CNN plus BiLSTM can overcome the drawbacks in the manual feature extraction methods. The experimental results show that the proposed gesture recognition framework can extract overall gesture features, which can improve the recognition rate.