通过神经网络的寻根和逼近方法

M. Epitropakis, M. Vrahatis
{"title":"通过神经网络的寻根和逼近方法","authors":"M. Epitropakis, M. Vrahatis","doi":"10.1145/1140378.1140382","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two approaches to approximate high order multivariate polynomials and to estimate the number of roots of high order univariate polynomials. We employ high order neural networks such as Ridge Polynomial Networks and Pi -- Sigma Networks, respectively. To train the networks efficiently and effectively, we recommend the application of stochastic global optimization techniques. Finally, we propose a two step neural network based technique, to estimate the number of roots of a high order univariate polynomial.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Root finding and approximation approaches through neural networks\",\"authors\":\"M. Epitropakis, M. Vrahatis\",\"doi\":\"10.1145/1140378.1140382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose two approaches to approximate high order multivariate polynomials and to estimate the number of roots of high order univariate polynomials. We employ high order neural networks such as Ridge Polynomial Networks and Pi -- Sigma Networks, respectively. To train the networks efficiently and effectively, we recommend the application of stochastic global optimization techniques. Finally, we propose a two step neural network based technique, to estimate the number of roots of a high order univariate polynomial.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1140378.1140382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1140378.1140382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了两种逼近高阶多元多项式和估计高阶一元多项式根数的方法。我们分别使用高阶神经网络,如Ridge多项式网络和Pi - Sigma网络。为了高效地训练网络,我们推荐使用随机全局优化技术。最后,我们提出了一种基于两步神经网络的技术来估计高阶单变量多项式的根数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Root finding and approximation approaches through neural networks
In this paper, we propose two approaches to approximate high order multivariate polynomials and to estimate the number of roots of high order univariate polynomials. We employ high order neural networks such as Ridge Polynomial Networks and Pi -- Sigma Networks, respectively. To train the networks efficiently and effectively, we recommend the application of stochastic global optimization techniques. Finally, we propose a two step neural network based technique, to estimate the number of roots of a high order univariate polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信