医疗信息物理系统中的上下文感知检测

Radoslav Ivanov, James Weimer, Insup Lee
{"title":"医疗信息物理系统中的上下文感知检测","authors":"Radoslav Ivanov, James Weimer, Insup Lee","doi":"10.1109/ICCPS.2018.00030","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of incorporating context in medical cyber-physical systems (MCPS) applications for the purpose of improving the performance of MCPS detectors. In particular, in many applications additional data could be used to conclude that actual measurements might be noisy or wrong (e.g., machine settings might indicate that the machine is improperly attached to the patient); we call such data context. The first contribution of this work is the formal definition of context, namely additional information whose presence is associated with a change in the measurement model (e.g., higher variance). Given this formulation, we developed the context-aware parameter-invariant (CA-PAIN) detector; the CA-PAIN detector improves upon the original PAIN detector by recognizing events with noisy measurements and not raising unnecessary false alarms. We evaluate the CA-PAIN detector both in simulation and on real-patient data; in both cases, the CA-PAIN detector achieves roughly a 20-percent reduction of false alarm rates over the PAIN detector, thus indicating that formalizing context and using it in a rigorous way is a promising direction for future work.","PeriodicalId":199062,"journal":{"name":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Context-Aware Detection in Medical Cyber-Physical Systems\",\"authors\":\"Radoslav Ivanov, James Weimer, Insup Lee\",\"doi\":\"10.1109/ICCPS.2018.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of incorporating context in medical cyber-physical systems (MCPS) applications for the purpose of improving the performance of MCPS detectors. In particular, in many applications additional data could be used to conclude that actual measurements might be noisy or wrong (e.g., machine settings might indicate that the machine is improperly attached to the patient); we call such data context. The first contribution of this work is the formal definition of context, namely additional information whose presence is associated with a change in the measurement model (e.g., higher variance). Given this formulation, we developed the context-aware parameter-invariant (CA-PAIN) detector; the CA-PAIN detector improves upon the original PAIN detector by recognizing events with noisy measurements and not raising unnecessary false alarms. We evaluate the CA-PAIN detector both in simulation and on real-patient data; in both cases, the CA-PAIN detector achieves roughly a 20-percent reduction of false alarm rates over the PAIN detector, thus indicating that formalizing context and using it in a rigorous way is a promising direction for future work.\",\"PeriodicalId\":199062,\"journal\":{\"name\":\"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPS.2018.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2018.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文考虑了在医疗信息物理系统(MCPS)应用中纳入上下文的问题,以提高MCPS检测器的性能。特别是,在许多应用中,可以使用额外的数据来得出实际测量可能有噪声或错误的结论(例如,机器设置可能表明机器未正确连接到患者身上);我们称这种数据为上下文。这项工作的第一个贡献是上下文的正式定义,即与度量模型中的变化相关的附加信息(例如,更高的方差)。鉴于这一公式,我们开发了上下文感知参数不变(CA-PAIN)检测器;CA-PAIN检测器改进了原来的PAIN检测器,可以识别带有噪声测量的事件,并且不会产生不必要的假警报。我们在模拟和实际患者数据中评估CA-PAIN检测器;在这两种情况下,CA-PAIN检测器比PAIN检测器实现了大约20%的误报率降低,从而表明形式化上下文并以严格的方式使用它是未来工作的一个有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-Aware Detection in Medical Cyber-Physical Systems
This paper considers the problem of incorporating context in medical cyber-physical systems (MCPS) applications for the purpose of improving the performance of MCPS detectors. In particular, in many applications additional data could be used to conclude that actual measurements might be noisy or wrong (e.g., machine settings might indicate that the machine is improperly attached to the patient); we call such data context. The first contribution of this work is the formal definition of context, namely additional information whose presence is associated with a change in the measurement model (e.g., higher variance). Given this formulation, we developed the context-aware parameter-invariant (CA-PAIN) detector; the CA-PAIN detector improves upon the original PAIN detector by recognizing events with noisy measurements and not raising unnecessary false alarms. We evaluate the CA-PAIN detector both in simulation and on real-patient data; in both cases, the CA-PAIN detector achieves roughly a 20-percent reduction of false alarm rates over the PAIN detector, thus indicating that formalizing context and using it in a rigorous way is a promising direction for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信