{"title":"基于点对点信誉的微电网交换质量提升机制","authors":"A. Loni, Somayeh Asadi, M. Nazari-Heris","doi":"10.1109/TPEC56611.2023.10078463","DOIUrl":null,"url":null,"abstract":"Nowadays, microgrids’ power exchanges have incurred structural and technological changes by utilization of renewable energy sources (RESs) and moving toward new power generation. The research proposed the collaborative power exchange mechanism/bed among microgrids without intermediaries in the distribution network aiming at reducing the operating costs and optimal schedule of RESs. This paper presents a decentralized and collaborative power exchange approach among microgrids, in which microgrids attempt to increase their individual payoffs by exchanging power in the coalitional groups. In addition to the decision variables of each coalition such as power loss, and amount of exchanged power, to have a logical and beneficial choice, picking partner(s) in each coalition should be based on a criterion such as reputation and reliability of partners/microgrids. To do so, this study takes advantage of cooperative game theory to (i) model the local power exchanges among microgrids and (ii) propose a peer-to-peer (P2P) reputation-based approach to evaluate the performance levels and effectiveness of microgrids’ power exchanges. Considering the microgrid’s reputation or its’ historical performance in previous interactions not only simplifies the cooperation of microgrids but also boosts the stability of the distribution grid. The obtained simulation results on three different IEEE 6-bus, 10-bus, and 14-bus microgrids indicate that considering the microgrids reputation in their exchanges lessened the costs caused by power outages and not full and on-time power delivery.","PeriodicalId":183284,"journal":{"name":"2023 IEEE Texas Power and Energy Conference (TPEC)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Peer-to-Peer Reputation-based Mechanism to Enhance Microgrids’ Power Exchange Quality\",\"authors\":\"A. Loni, Somayeh Asadi, M. Nazari-Heris\",\"doi\":\"10.1109/TPEC56611.2023.10078463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, microgrids’ power exchanges have incurred structural and technological changes by utilization of renewable energy sources (RESs) and moving toward new power generation. The research proposed the collaborative power exchange mechanism/bed among microgrids without intermediaries in the distribution network aiming at reducing the operating costs and optimal schedule of RESs. This paper presents a decentralized and collaborative power exchange approach among microgrids, in which microgrids attempt to increase their individual payoffs by exchanging power in the coalitional groups. In addition to the decision variables of each coalition such as power loss, and amount of exchanged power, to have a logical and beneficial choice, picking partner(s) in each coalition should be based on a criterion such as reputation and reliability of partners/microgrids. To do so, this study takes advantage of cooperative game theory to (i) model the local power exchanges among microgrids and (ii) propose a peer-to-peer (P2P) reputation-based approach to evaluate the performance levels and effectiveness of microgrids’ power exchanges. Considering the microgrid’s reputation or its’ historical performance in previous interactions not only simplifies the cooperation of microgrids but also boosts the stability of the distribution grid. The obtained simulation results on three different IEEE 6-bus, 10-bus, and 14-bus microgrids indicate that considering the microgrids reputation in their exchanges lessened the costs caused by power outages and not full and on-time power delivery.\",\"PeriodicalId\":183284,\"journal\":{\"name\":\"2023 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC56611.2023.10078463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC56611.2023.10078463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Peer-to-Peer Reputation-based Mechanism to Enhance Microgrids’ Power Exchange Quality
Nowadays, microgrids’ power exchanges have incurred structural and technological changes by utilization of renewable energy sources (RESs) and moving toward new power generation. The research proposed the collaborative power exchange mechanism/bed among microgrids without intermediaries in the distribution network aiming at reducing the operating costs and optimal schedule of RESs. This paper presents a decentralized and collaborative power exchange approach among microgrids, in which microgrids attempt to increase their individual payoffs by exchanging power in the coalitional groups. In addition to the decision variables of each coalition such as power loss, and amount of exchanged power, to have a logical and beneficial choice, picking partner(s) in each coalition should be based on a criterion such as reputation and reliability of partners/microgrids. To do so, this study takes advantage of cooperative game theory to (i) model the local power exchanges among microgrids and (ii) propose a peer-to-peer (P2P) reputation-based approach to evaluate the performance levels and effectiveness of microgrids’ power exchanges. Considering the microgrid’s reputation or its’ historical performance in previous interactions not only simplifies the cooperation of microgrids but also boosts the stability of the distribution grid. The obtained simulation results on three different IEEE 6-bus, 10-bus, and 14-bus microgrids indicate that considering the microgrids reputation in their exchanges lessened the costs caused by power outages and not full and on-time power delivery.