基于四向图里亚姆的非欧几里得几何表征

Prem Kumar Singh
{"title":"基于四向图里亚姆的非欧几里得几何表征","authors":"Prem Kumar Singh","doi":"10.54216/jnfs.050207","DOIUrl":null,"url":null,"abstract":"Recently, a problem is addressed while dealing the data with Non-Euclidean Geometry and its characterization. The mathematician found negation of fifth postulates of Euclidean geometry easily and called as Non-Euclidean geometry. However Riemannian provided negation of second postulates also which still considered as Non-Euclidean. In this case the problem arises what will happen in case negation of other Euclid Postulates exists. Same time total total or partial negation of Euclid postulates fails as hybrid Geometry. It become more crucial in case the data is unknown, incomplete or exists beyond the three-way space as heteroclinic pattern. To understand this problem, the current paper tried to distinguish Euclidean, Non-Euclidean, Anti-Geometry, Neutrogeometry and Turiyam or Unknown geometry using the complement operator with an example.","PeriodicalId":438286,"journal":{"name":"Journal of Neutrosophic and Fuzzy Systems","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Four-Way Turiyam based Characterization of Non-Euclidean Geometry\",\"authors\":\"Prem Kumar Singh\",\"doi\":\"10.54216/jnfs.050207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a problem is addressed while dealing the data with Non-Euclidean Geometry and its characterization. The mathematician found negation of fifth postulates of Euclidean geometry easily and called as Non-Euclidean geometry. However Riemannian provided negation of second postulates also which still considered as Non-Euclidean. In this case the problem arises what will happen in case negation of other Euclid Postulates exists. Same time total total or partial negation of Euclid postulates fails as hybrid Geometry. It become more crucial in case the data is unknown, incomplete or exists beyond the three-way space as heteroclinic pattern. To understand this problem, the current paper tried to distinguish Euclidean, Non-Euclidean, Anti-Geometry, Neutrogeometry and Turiyam or Unknown geometry using the complement operator with an example.\",\"PeriodicalId\":438286,\"journal\":{\"name\":\"Journal of Neutrosophic and Fuzzy Systems\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neutrosophic and Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jnfs.050207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutrosophic and Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jnfs.050207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,研究了非欧几里得几何数据处理及其表征中的一个问题。数学家很容易地发现欧几里得几何第五公设的否定性,称之为非欧几里得几何。然而黎曼也提供了第二公设的否定,但仍被认为是非欧几里得的。在这种情况下,问题出现了,如果否定其他欧几里得公设存在,将会发生什么。同时,欧几里得公设的全部否定或部分否定作为混合几何失效。如果数据是未知的、不完整的或以异诊所模式存在于三方空间之外,则更为重要。为了理解这一问题,本文试图用补算符区分欧几里得几何、非欧几里得几何、反几何、中性几何和Turiyam或Unknown几何,并给出了一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four-Way Turiyam based Characterization of Non-Euclidean Geometry
Recently, a problem is addressed while dealing the data with Non-Euclidean Geometry and its characterization. The mathematician found negation of fifth postulates of Euclidean geometry easily and called as Non-Euclidean geometry. However Riemannian provided negation of second postulates also which still considered as Non-Euclidean. In this case the problem arises what will happen in case negation of other Euclid Postulates exists. Same time total total or partial negation of Euclid postulates fails as hybrid Geometry. It become more crucial in case the data is unknown, incomplete or exists beyond the three-way space as heteroclinic pattern. To understand this problem, the current paper tried to distinguish Euclidean, Non-Euclidean, Anti-Geometry, Neutrogeometry and Turiyam or Unknown geometry using the complement operator with an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信