上消化道内镜图像解剖标志的分类

Thanh-Hai Tran, Phuong Thi Tuyet Nguyen, Duc-Huy Tran, X. Manh, Danh H. Vu, Nguyen-Khang Ho, Khanh-Linh Do, Van-Tuan Nguyen, Long-Thuy Nguyen, V. Dao, Hai Vu
{"title":"上消化道内镜图像解剖标志的分类","authors":"Thanh-Hai Tran, Phuong Thi Tuyet Nguyen, Duc-Huy Tran, X. Manh, Danh H. Vu, Nguyen-Khang Ho, Khanh-Linh Do, Van-Tuan Nguyen, Long-Thuy Nguyen, V. Dao, Hai Vu","doi":"10.1109/NICS54270.2021.9701513","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework that automatically classifies anatomical landmarks of Upper GastroIntestinal Endoscopy (UGIE). This framework aims to select the best deep neural network in terms of both criteria of classification performances and computational costs. We investigate two lightweight deep neural networks that are ResNet-18, MobileNet-V2 to learn hidden discriminant features for multi classification task. In addition, because convolutional neural networks (CNNs) are data hungry, we examine various data augmentation (DA) techniques such as Brightness and Contrast Transformation (BaC), Geometric Transformation (GeoT), and Variational Auto-Encoder (VAE). Impacts of these DA schemes are evaluated for both CNN models. The experiments are conducted on a self collected dataset of 3700 endoscopic images which contains 10 anatomical landmarks of UGIE. The results show outstanding performances of both models thanks to DA techniques compared to the original data usage. The best sensitivity is 97.43% and specificity is 99.71% using MobileNet-V2 with Geometric Transformation based DA technique at a frame-rate of 21fps. These results highlight the best model which has significant potential for developing computer-aided esophagogastroduodenoscopy (EGD) diagnostic systems.","PeriodicalId":296963,"journal":{"name":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of anatomical landmarks from upper gastrointestinal endoscopic images⋆\",\"authors\":\"Thanh-Hai Tran, Phuong Thi Tuyet Nguyen, Duc-Huy Tran, X. Manh, Danh H. Vu, Nguyen-Khang Ho, Khanh-Linh Do, Van-Tuan Nguyen, Long-Thuy Nguyen, V. Dao, Hai Vu\",\"doi\":\"10.1109/NICS54270.2021.9701513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a framework that automatically classifies anatomical landmarks of Upper GastroIntestinal Endoscopy (UGIE). This framework aims to select the best deep neural network in terms of both criteria of classification performances and computational costs. We investigate two lightweight deep neural networks that are ResNet-18, MobileNet-V2 to learn hidden discriminant features for multi classification task. In addition, because convolutional neural networks (CNNs) are data hungry, we examine various data augmentation (DA) techniques such as Brightness and Contrast Transformation (BaC), Geometric Transformation (GeoT), and Variational Auto-Encoder (VAE). Impacts of these DA schemes are evaluated for both CNN models. The experiments are conducted on a self collected dataset of 3700 endoscopic images which contains 10 anatomical landmarks of UGIE. The results show outstanding performances of both models thanks to DA techniques compared to the original data usage. The best sensitivity is 97.43% and specificity is 99.71% using MobileNet-V2 with Geometric Transformation based DA technique at a frame-rate of 21fps. These results highlight the best model which has significant potential for developing computer-aided esophagogastroduodenoscopy (EGD) diagnostic systems.\",\"PeriodicalId\":296963,\"journal\":{\"name\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS54270.2021.9701513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS54270.2021.9701513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个自动分类上消化道内镜(UGIE)解剖标志的框架。该框架旨在从分类性能和计算成本两方面选择最佳的深度神经网络。我们研究了ResNet-18、MobileNet-V2两个轻量级深度神经网络,以学习多分类任务的隐藏判别特征。此外,由于卷积神经网络(cnn)需要大量数据,我们研究了各种数据增强(DA)技术,如亮度和对比度变换(BaC)、几何变换(GeoT)和变分自编码器(VAE)。对两种CNN模型评估了这些数据处理方案的影响。实验是在自收集的3700张内镜图像数据集上进行的,其中包含10个UGIE的解剖标志。结果表明,与原始数据使用相比,数据处理技术使两种模型都具有出色的性能。在帧率为21fps的情况下,利用MobileNet-V2和基于几何变换的DA技术,灵敏度为97.43%,特异度为99.71%。这些结果突出了计算机辅助食管胃十二指肠镜(EGD)诊断系统的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of anatomical landmarks from upper gastrointestinal endoscopic images⋆
In this paper, we propose a framework that automatically classifies anatomical landmarks of Upper GastroIntestinal Endoscopy (UGIE). This framework aims to select the best deep neural network in terms of both criteria of classification performances and computational costs. We investigate two lightweight deep neural networks that are ResNet-18, MobileNet-V2 to learn hidden discriminant features for multi classification task. In addition, because convolutional neural networks (CNNs) are data hungry, we examine various data augmentation (DA) techniques such as Brightness and Contrast Transformation (BaC), Geometric Transformation (GeoT), and Variational Auto-Encoder (VAE). Impacts of these DA schemes are evaluated for both CNN models. The experiments are conducted on a self collected dataset of 3700 endoscopic images which contains 10 anatomical landmarks of UGIE. The results show outstanding performances of both models thanks to DA techniques compared to the original data usage. The best sensitivity is 97.43% and specificity is 99.71% using MobileNet-V2 with Geometric Transformation based DA technique at a frame-rate of 21fps. These results highlight the best model which has significant potential for developing computer-aided esophagogastroduodenoscopy (EGD) diagnostic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信