双轮纺丝机成纤维的模拟实验研究

B. Bizjan, B. Širok, M. Blagojevič
{"title":"双轮纺丝机成纤维的模拟实验研究","authors":"B. Bizjan, B. Širok, M. Blagojevič","doi":"10.5545/sv-jme.2020.6557","DOIUrl":null,"url":null,"abstract":"In this paper, the process of mineral fiber formation was investigated experimentally on a two-wheel spinner by means of high-speed imaging. Analogue isomalt melt was fiberized at different rotational speeds of spinner wheels, melt flow rates and impingement positions so that the fiberization process was dynamically similar to an industrial mineral wool production process. Images of fiber formation and transport reveal highly complex dynamics of these processes, as fibers mostly occur in form of 3D mutually intertwined structures such as clusters, strands and veils periodically shedding from the melt film. Despite the complexity of flow structures, there is a clear trend of increasing mean fiber length and expansion angle of the coaxial fiber-laden flow as the Weber number and the ratio of melt film velocity to blowing air velocity are increased. The fiberization efficiency (ratio of fiber mass deposited on the collecting mesh to the mass of melt poured) is affected by the impingement position and flow rate of melt as well as the Weber number of melt film. The optimum efficiency was attained at 30° (1 o’clock) impingement position and the ratio of melt film to blowing air flow velocity close to unity.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"341 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analogue Experimental Study of Fiber Formation on Two-Wheel Spinner\",\"authors\":\"B. Bizjan, B. Širok, M. Blagojevič\",\"doi\":\"10.5545/sv-jme.2020.6557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the process of mineral fiber formation was investigated experimentally on a two-wheel spinner by means of high-speed imaging. Analogue isomalt melt was fiberized at different rotational speeds of spinner wheels, melt flow rates and impingement positions so that the fiberization process was dynamically similar to an industrial mineral wool production process. Images of fiber formation and transport reveal highly complex dynamics of these processes, as fibers mostly occur in form of 3D mutually intertwined structures such as clusters, strands and veils periodically shedding from the melt film. Despite the complexity of flow structures, there is a clear trend of increasing mean fiber length and expansion angle of the coaxial fiber-laden flow as the Weber number and the ratio of melt film velocity to blowing air velocity are increased. The fiberization efficiency (ratio of fiber mass deposited on the collecting mesh to the mass of melt poured) is affected by the impingement position and flow rate of melt as well as the Weber number of melt film. The optimum efficiency was attained at 30° (1 o’clock) impingement position and the ratio of melt film to blowing air flow velocity close to unity.\",\"PeriodicalId\":135907,\"journal\":{\"name\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"volume\":\"341 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5545/sv-jme.2020.6557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik – Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/sv-jme.2020.6557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用高速成像技术,在双轮纺纱机上对矿物纤维的形成过程进行了实验研究。模拟异麦芽糖熔体在不同纺丝轮转速、熔体流量和碰撞位置下进行纤维化,使纤维化过程与工业矿棉生产过程动态相似。纤维形成和运输的图像揭示了这些过程的高度复杂的动力学,因为纤维大多以3D相互交织的结构形式出现,如簇、股和面纱周期性地从熔融膜上脱落。尽管流动结构复杂,但随着韦伯数和熔膜速度与吹气速度之比的增大,同轴纤维负载流的平均纤维长度和膨胀角有明显的增加趋势。纤维化效率(沉积在收集网上的纤维质量与浇注的熔体质量之比)受熔体撞击位置和流速以及熔体膜的韦伯数的影响。在30°(1点钟方向)撞击位置,熔膜与吹气速度之比接近于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analogue Experimental Study of Fiber Formation on Two-Wheel Spinner
In this paper, the process of mineral fiber formation was investigated experimentally on a two-wheel spinner by means of high-speed imaging. Analogue isomalt melt was fiberized at different rotational speeds of spinner wheels, melt flow rates and impingement positions so that the fiberization process was dynamically similar to an industrial mineral wool production process. Images of fiber formation and transport reveal highly complex dynamics of these processes, as fibers mostly occur in form of 3D mutually intertwined structures such as clusters, strands and veils periodically shedding from the melt film. Despite the complexity of flow structures, there is a clear trend of increasing mean fiber length and expansion angle of the coaxial fiber-laden flow as the Weber number and the ratio of melt film velocity to blowing air velocity are increased. The fiberization efficiency (ratio of fiber mass deposited on the collecting mesh to the mass of melt poured) is affected by the impingement position and flow rate of melt as well as the Weber number of melt film. The optimum efficiency was attained at 30° (1 o’clock) impingement position and the ratio of melt film to blowing air flow velocity close to unity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信