基于多属性的图像检索相关反馈技术

Tat-Seng Chua, Chun-Xin Chu, M. Kankanhalli
{"title":"基于多属性的图像检索相关反馈技术","authors":"Tat-Seng Chua, Chun-Xin Chu, M. Kankanhalli","doi":"10.1109/MMCS.1999.779320","DOIUrl":null,"url":null,"abstract":"The paper proposes a relevance feedback (RF) approach to content based image retrieval using multiple attributes. The proposed approach has been applied to images' text and color attributes. In order to ensure that meaningful features are extracted, a pseudo object model based on color coherence vector has been adopted to model color content. The RF approach employs techniques developed in the fields of information retrieval and machine learning to extract pertinent features from each of the attributes. It then uses the user's relevance judgments to estimate the importance of different attributes in an integrated content based image retrieval. The system developed has been tested on a large image collection containing over 12000 images. The results demonstrate that the proposed RF approaches and pseudo object based color model are effective.","PeriodicalId":408680,"journal":{"name":"Proceedings IEEE International Conference on Multimedia Computing and Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Relevance feedback techniques for image retrieval using multiple attributes\",\"authors\":\"Tat-Seng Chua, Chun-Xin Chu, M. Kankanhalli\",\"doi\":\"10.1109/MMCS.1999.779320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a relevance feedback (RF) approach to content based image retrieval using multiple attributes. The proposed approach has been applied to images' text and color attributes. In order to ensure that meaningful features are extracted, a pseudo object model based on color coherence vector has been adopted to model color content. The RF approach employs techniques developed in the fields of information retrieval and machine learning to extract pertinent features from each of the attributes. It then uses the user's relevance judgments to estimate the importance of different attributes in an integrated content based image retrieval. The system developed has been tested on a large image collection containing over 12000 images. The results demonstrate that the proposed RF approaches and pseudo object based color model are effective.\",\"PeriodicalId\":408680,\"journal\":{\"name\":\"Proceedings IEEE International Conference on Multimedia Computing and Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Conference on Multimedia Computing and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMCS.1999.779320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Multimedia Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMCS.1999.779320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种基于内容的多属性图像检索的相关反馈方法。该方法已应用于图像的文本和颜色属性。为了保证提取有意义的特征,采用基于颜色相干向量的伪对象模型对颜色内容进行建模。RF方法采用信息检索和机器学习领域发展的技术,从每个属性中提取相关特征。然后,它使用用户的相关性判断来估计基于集成内容的图像检索中不同属性的重要性。所开发的系统已在包含超过12000张图像的大型图像集上进行了测试。结果表明,所提出的射频方法和基于伪目标的颜色模型是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relevance feedback techniques for image retrieval using multiple attributes
The paper proposes a relevance feedback (RF) approach to content based image retrieval using multiple attributes. The proposed approach has been applied to images' text and color attributes. In order to ensure that meaningful features are extracted, a pseudo object model based on color coherence vector has been adopted to model color content. The RF approach employs techniques developed in the fields of information retrieval and machine learning to extract pertinent features from each of the attributes. It then uses the user's relevance judgments to estimate the importance of different attributes in an integrated content based image retrieval. The system developed has been tested on a large image collection containing over 12000 images. The results demonstrate that the proposed RF approaches and pseudo object based color model are effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信