细胞分类器训练超参数的系统分析与自动搜索

Philipp Gräbel, Gregor Nickel, M. Crysandt, Reinhild Herwartz, Melanie Baumann, B. Klinkhammer, P. Boor, T. Brümmendorf, D. Merhof
{"title":"细胞分类器训练超参数的系统分析与自动搜索","authors":"Philipp Gräbel, Gregor Nickel, M. Crysandt, Reinhild Herwartz, Melanie Baumann, B. Klinkhammer, P. Boor, T. Brümmendorf, D. Merhof","doi":"10.1109/ISBIWorkshops50223.2020.9153408","DOIUrl":null,"url":null,"abstract":"Performance and robustness of neural networks depend on a suitable choice of hyper-parameters, which is important in research as well as for the final deployment of deep learning algorithms. While a manual systematical analysis can be too time consuming, a fully automatic search is very dependent on the kind of hyper-parameters. For a cell classification network, we assess the individual effects of a large number of hyper-parameters and compare the resulting choice of hyperparameters with state of the art search techniques. We further propose an approach for automated, successive search space reduction that yields well performing sets of hyperparameters in a time-efficient way.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Systematic Analysis And Automated Search Of Hyper-Parameters For Cell Classifier Training\",\"authors\":\"Philipp Gräbel, Gregor Nickel, M. Crysandt, Reinhild Herwartz, Melanie Baumann, B. Klinkhammer, P. Boor, T. Brümmendorf, D. Merhof\",\"doi\":\"10.1109/ISBIWorkshops50223.2020.9153408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance and robustness of neural networks depend on a suitable choice of hyper-parameters, which is important in research as well as for the final deployment of deep learning algorithms. While a manual systematical analysis can be too time consuming, a fully automatic search is very dependent on the kind of hyper-parameters. For a cell classification network, we assess the individual effects of a large number of hyper-parameters and compare the resulting choice of hyperparameters with state of the art search techniques. We further propose an approach for automated, successive search space reduction that yields well performing sets of hyperparameters in a time-efficient way.\",\"PeriodicalId\":329356,\"journal\":{\"name\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经网络的性能和鲁棒性取决于超参数的合适选择,这在研究以及深度学习算法的最终部署中都很重要。虽然手动系统分析可能太耗时,但全自动搜索非常依赖于超参数的类型。对于细胞分类网络,我们评估了大量超参数的个体影响,并将最终的超参数选择与最先进的搜索技术进行了比较。我们进一步提出了一种自动的、连续的搜索空间缩减方法,以一种时间效率高的方式产生性能良好的超参数集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic Analysis And Automated Search Of Hyper-Parameters For Cell Classifier Training
Performance and robustness of neural networks depend on a suitable choice of hyper-parameters, which is important in research as well as for the final deployment of deep learning algorithms. While a manual systematical analysis can be too time consuming, a fully automatic search is very dependent on the kind of hyper-parameters. For a cell classification network, we assess the individual effects of a large number of hyper-parameters and compare the resulting choice of hyperparameters with state of the art search techniques. We further propose an approach for automated, successive search space reduction that yields well performing sets of hyperparameters in a time-efficient way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信