Jorge Rosano Nonay, C. Fuchs, Davide Orsucci, C. Schmidt, D. Giggenbach
{"title":"SelenIRIS:用于立方体卫星的月地光通信终端","authors":"Jorge Rosano Nonay, C. Fuchs, Davide Orsucci, C. Schmidt, D. Giggenbach","doi":"10.1109/icsos53063.2022.9749725","DOIUrl":null,"url":null,"abstract":"Satellite miniaturization and sinking costs of manu-facturing and launches are bringing Moon missions in the focus of many space companies and agencies. However, achieving the desired data rates on CubeSats over long ranges is proving increasingly challenging with traditional radio-frequency communication systems. Free-space optical (FSO) communications offer a compact, light, and low-power alternative with higher data throughput and fewer limitations (e.g., fewer governmental regulations, channel interference, eavesdropping...). Based on its long heritage of laser communications and new-space tech-nology, the German Aerospace Center (DLR) is investigating SelenIRIS-a miniaturized terminal for Moon-Earth optical data transmissions-for its OSIRIS program. This paper will analyze the necessary adaptations that are required to transfer the technology from the flight-proven low Earth orbit terminals like OSIRIS4CubeSat (O4C) [1] to a concept mission in Lunar orbit.","PeriodicalId":237453,"journal":{"name":"2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SelenIRIS: a Moon-Earth Optical Communication Terminal for CubeSats\",\"authors\":\"Jorge Rosano Nonay, C. Fuchs, Davide Orsucci, C. Schmidt, D. Giggenbach\",\"doi\":\"10.1109/icsos53063.2022.9749725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite miniaturization and sinking costs of manu-facturing and launches are bringing Moon missions in the focus of many space companies and agencies. However, achieving the desired data rates on CubeSats over long ranges is proving increasingly challenging with traditional radio-frequency communication systems. Free-space optical (FSO) communications offer a compact, light, and low-power alternative with higher data throughput and fewer limitations (e.g., fewer governmental regulations, channel interference, eavesdropping...). Based on its long heritage of laser communications and new-space tech-nology, the German Aerospace Center (DLR) is investigating SelenIRIS-a miniaturized terminal for Moon-Earth optical data transmissions-for its OSIRIS program. This paper will analyze the necessary adaptations that are required to transfer the technology from the flight-proven low Earth orbit terminals like OSIRIS4CubeSat (O4C) [1] to a concept mission in Lunar orbit.\",\"PeriodicalId\":237453,\"journal\":{\"name\":\"2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icsos53063.2022.9749725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsos53063.2022.9749725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SelenIRIS: a Moon-Earth Optical Communication Terminal for CubeSats
Satellite miniaturization and sinking costs of manu-facturing and launches are bringing Moon missions in the focus of many space companies and agencies. However, achieving the desired data rates on CubeSats over long ranges is proving increasingly challenging with traditional radio-frequency communication systems. Free-space optical (FSO) communications offer a compact, light, and low-power alternative with higher data throughput and fewer limitations (e.g., fewer governmental regulations, channel interference, eavesdropping...). Based on its long heritage of laser communications and new-space tech-nology, the German Aerospace Center (DLR) is investigating SelenIRIS-a miniaturized terminal for Moon-Earth optical data transmissions-for its OSIRIS program. This paper will analyze the necessary adaptations that are required to transfer the technology from the flight-proven low Earth orbit terminals like OSIRIS4CubeSat (O4C) [1] to a concept mission in Lunar orbit.