眼动追踪中因果图的呈现及格式塔原理的应用

Lisa Grabinger, Florian Hauser, J. Mottok
{"title":"眼动追踪中因果图的呈现及格式塔原理的应用","authors":"Lisa Grabinger, Florian Hauser, J. Mottok","doi":"10.1109/saner53432.2022.00153","DOIUrl":null,"url":null,"abstract":"The discipline of causal inference uses so-called causal graphs to model cause and effect relations of random variables. As those graphs only encode a relation structure there is no hard rule concerning their alignment. The present paper presents a study with the aim of working out the optimal alignment of causal graphs with respect to comprehensibility and interestingness. In addition, the study examines whether the central gestalt principles of psychology apply for causal graphs. Data from 29 participants is acquired by triangulating eye tracking with a questionnaire. The results of the study suggest that causal graphs should be aligned downwards. Moreover, the gestalt principles proximity, similarity and closure are shown to hold true for causal graphs.","PeriodicalId":437520,"journal":{"name":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accessing the Presentation of Causal Graphs and an Application of Gestalt Principles with Eye Tracking\",\"authors\":\"Lisa Grabinger, Florian Hauser, J. Mottok\",\"doi\":\"10.1109/saner53432.2022.00153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discipline of causal inference uses so-called causal graphs to model cause and effect relations of random variables. As those graphs only encode a relation structure there is no hard rule concerning their alignment. The present paper presents a study with the aim of working out the optimal alignment of causal graphs with respect to comprehensibility and interestingness. In addition, the study examines whether the central gestalt principles of psychology apply for causal graphs. Data from 29 participants is acquired by triangulating eye tracking with a questionnaire. The results of the study suggest that causal graphs should be aligned downwards. Moreover, the gestalt principles proximity, similarity and closure are shown to hold true for causal graphs.\",\"PeriodicalId\":437520,\"journal\":{\"name\":\"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/saner53432.2022.00153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/saner53432.2022.00153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

因果推理学科使用所谓的因果图来模拟随机变量的因果关系。由于这些图只编码关系结构,因此没有关于它们对齐的硬性规则。本文提出了一项研究,目的是在可理解性和趣味性方面找出因果图的最佳对齐方式。此外,该研究还考察了心理学的中心格式塔原则是否适用于因果图。来自29名参与者的数据是通过三角眼动追踪和问卷调查获得的。研究结果表明,因果关系图应该向下排列。此外,格式塔原则的接近性,相似性和封闭性被证明是正确的因果图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accessing the Presentation of Causal Graphs and an Application of Gestalt Principles with Eye Tracking
The discipline of causal inference uses so-called causal graphs to model cause and effect relations of random variables. As those graphs only encode a relation structure there is no hard rule concerning their alignment. The present paper presents a study with the aim of working out the optimal alignment of causal graphs with respect to comprehensibility and interestingness. In addition, the study examines whether the central gestalt principles of psychology apply for causal graphs. Data from 29 participants is acquired by triangulating eye tracking with a questionnaire. The results of the study suggest that causal graphs should be aligned downwards. Moreover, the gestalt principles proximity, similarity and closure are shown to hold true for causal graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信