易水热合成具有增强电化学性能的硫化锌钴纳米片作为超级电容器电极材料

M. Dakshana, S. Meyvel, M. Silambarasan, P. Sathya, M. Malarvizhi, R. Ramesh, S. Prabhu
{"title":"易水热合成具有增强电化学性能的硫化锌钴纳米片作为超级电容器电极材料","authors":"M. Dakshana, S. Meyvel, M. Silambarasan, P. Sathya, M. Malarvizhi, R. Ramesh, S. Prabhu","doi":"10.1063/5.0019602","DOIUrl":null,"url":null,"abstract":"Ternary transition metal sulfides are propitious electrode materials caused by low electronegativity, high conductivity and higher electrochemical activity in comparison to transition metal oxides and single metal sulfides. In this work, Zinc Cobalt Sulfide (ZCS)nanosheets have been successfully prepared through a simple, cost-effective hydrothermal method and characterized by X- Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X- Ray Analysis (EDX), Transmission Electron Microscope (TEM), and X-Ray Photoelectron Spectroscopy (XPS). The supercapacitor performance of ZCS nanomaterial electrodes was done by electrochemical measurements and ZCS nanosheets revealed a clear enhancement in specific capacity and cycling stability. Electrochemical impedance spectroscopy showed a much lower charge transfer resistance of the samples. These results proved that the ZCS nanosheets may be utilized as capable electrode materials for next generation energy storage devices.","PeriodicalId":344705,"journal":{"name":"INTERNATIONAL CONFERENCE ON MULTIFUNCTIONAL MATERIALS (ICMM-2019)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Facile hydrothermal synthesis of zinc cobalt sulfide nanosheets with enhanced electrochemical performance as supercapacitor electrode materials\",\"authors\":\"M. Dakshana, S. Meyvel, M. Silambarasan, P. Sathya, M. Malarvizhi, R. Ramesh, S. Prabhu\",\"doi\":\"10.1063/5.0019602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ternary transition metal sulfides are propitious electrode materials caused by low electronegativity, high conductivity and higher electrochemical activity in comparison to transition metal oxides and single metal sulfides. In this work, Zinc Cobalt Sulfide (ZCS)nanosheets have been successfully prepared through a simple, cost-effective hydrothermal method and characterized by X- Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X- Ray Analysis (EDX), Transmission Electron Microscope (TEM), and X-Ray Photoelectron Spectroscopy (XPS). The supercapacitor performance of ZCS nanomaterial electrodes was done by electrochemical measurements and ZCS nanosheets revealed a clear enhancement in specific capacity and cycling stability. Electrochemical impedance spectroscopy showed a much lower charge transfer resistance of the samples. These results proved that the ZCS nanosheets may be utilized as capable electrode materials for next generation energy storage devices.\",\"PeriodicalId\":344705,\"journal\":{\"name\":\"INTERNATIONAL CONFERENCE ON MULTIFUNCTIONAL MATERIALS (ICMM-2019)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL CONFERENCE ON MULTIFUNCTIONAL MATERIALS (ICMM-2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0019602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL CONFERENCE ON MULTIFUNCTIONAL MATERIALS (ICMM-2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0019602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与过渡金属氧化物和单一金属硫化物相比,三元过渡金属硫化物具有电负性低、电导率高、电化学活性高等优点,是一种有利的电极材料。本文采用简单、经济的水热法制备了硫化钴锌(ZCS)纳米片,并通过X射线衍射(XRD)、场发射扫描电镜(FE-SEM)和能量色散X射线分析(EDX)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对其进行了表征。通过电化学测试对ZCS纳米电极的超级电容器性能进行了测试,结果表明ZCS纳米片在比容量和循环稳定性方面有明显的提高。电化学阻抗谱分析表明,样品的电荷转移电阻较低。这些结果证明了ZCS纳米片可以作为下一代储能器件的电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile hydrothermal synthesis of zinc cobalt sulfide nanosheets with enhanced electrochemical performance as supercapacitor electrode materials
Ternary transition metal sulfides are propitious electrode materials caused by low electronegativity, high conductivity and higher electrochemical activity in comparison to transition metal oxides and single metal sulfides. In this work, Zinc Cobalt Sulfide (ZCS)nanosheets have been successfully prepared through a simple, cost-effective hydrothermal method and characterized by X- Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X- Ray Analysis (EDX), Transmission Electron Microscope (TEM), and X-Ray Photoelectron Spectroscopy (XPS). The supercapacitor performance of ZCS nanomaterial electrodes was done by electrochemical measurements and ZCS nanosheets revealed a clear enhancement in specific capacity and cycling stability. Electrochemical impedance spectroscopy showed a much lower charge transfer resistance of the samples. These results proved that the ZCS nanosheets may be utilized as capable electrode materials for next generation energy storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信