多目标进化优化中基于超体积的局部搜索

M. Pilát, Roman Neruda
{"title":"多目标进化优化中基于超体积的局部搜索","authors":"M. Pilát, Roman Neruda","doi":"10.1145/2576768.2598332","DOIUrl":null,"url":null,"abstract":"This paper describes a surrogate based multi-objective evolutionary algorithm with hyper-volume contribution-based local search. The algorithm switches between an NSGA-II phase and a local search phase. In the local search phase, a model for each of the objectives is trained and CMA-ES is used to optimize the hyper-volume contribution of each individual with respect to its two neighbors on the non-dominated front. The performance of the algorithm is evaluated using the well known ZDT and WFG benchmark suites.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Hypervolume-based local search in multi-objective evolutionary optimization\",\"authors\":\"M. Pilát, Roman Neruda\",\"doi\":\"10.1145/2576768.2598332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a surrogate based multi-objective evolutionary algorithm with hyper-volume contribution-based local search. The algorithm switches between an NSGA-II phase and a local search phase. In the local search phase, a model for each of the objectives is trained and CMA-ES is used to optimize the hyper-volume contribution of each individual with respect to its two neighbors on the non-dominated front. The performance of the algorithm is evaluated using the well known ZDT and WFG benchmark suites.\",\"PeriodicalId\":123241,\"journal\":{\"name\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2576768.2598332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文描述了一种基于代理的多目标进化算法,该算法具有基于超容量贡献的局部搜索。算法在NSGA-II阶段和局部搜索阶段之间切换。在局部搜索阶段,为每个目标训练一个模型,并使用CMA-ES来优化每个个体相对于其非主导前沿的两个邻居的超体积贡献。使用众所周知的ZDT和WFG基准套件来评估算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypervolume-based local search in multi-objective evolutionary optimization
This paper describes a surrogate based multi-objective evolutionary algorithm with hyper-volume contribution-based local search. The algorithm switches between an NSGA-II phase and a local search phase. In the local search phase, a model for each of the objectives is trained and CMA-ES is used to optimize the hyper-volume contribution of each individual with respect to its two neighbors on the non-dominated front. The performance of the algorithm is evaluated using the well known ZDT and WFG benchmark suites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信