{"title":"机载风能系统实验注入装置和控制器优化实例研究","authors":"N. Deodhar, C. Vermillion, P. Tkacik","doi":"10.1109/ACC.2015.7171087","DOIUrl":null,"url":null,"abstract":"This paper presents a combined plant and controller optimization process for airborne wind energy systems (AWEs) that fuses numerical optimization with lab-scale experimental results. The methodology introduced in this paper, referred to as experimentally-infused optimization, addresses several challenges faced by AWE system designers, including a strong coupling between the controller and plant design, significant modeling uncertainties (which require the use of experiments), and high costs associated with full-scale experimental prototypes. This paper presents an initial case study of the proposed experimentally-infused optimization, where experiments were conducted on a 1/100th-scale model of Altaeros Buoyant Air Turbine (BAT), which was tethered and flown in the University of North Carolina at Charlotte 1m × 1m water channel. The lab-scale experimental platform reduced the cost of evaluating flight dynamics and control by more than two orders of magnitude, while resulting in substantially improved flight performance, quantified by a 15.2 percent improvement in an objective function value, as compared to a purely numerical optimization.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A case study in experimentally-infused plant and controller optimization for airborne wind energy systems\",\"authors\":\"N. Deodhar, C. Vermillion, P. Tkacik\",\"doi\":\"10.1109/ACC.2015.7171087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a combined plant and controller optimization process for airborne wind energy systems (AWEs) that fuses numerical optimization with lab-scale experimental results. The methodology introduced in this paper, referred to as experimentally-infused optimization, addresses several challenges faced by AWE system designers, including a strong coupling between the controller and plant design, significant modeling uncertainties (which require the use of experiments), and high costs associated with full-scale experimental prototypes. This paper presents an initial case study of the proposed experimentally-infused optimization, where experiments were conducted on a 1/100th-scale model of Altaeros Buoyant Air Turbine (BAT), which was tethered and flown in the University of North Carolina at Charlotte 1m × 1m water channel. The lab-scale experimental platform reduced the cost of evaluating flight dynamics and control by more than two orders of magnitude, while resulting in substantially improved flight performance, quantified by a 15.2 percent improvement in an objective function value, as compared to a purely numerical optimization.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7171087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7171087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A case study in experimentally-infused plant and controller optimization for airborne wind energy systems
This paper presents a combined plant and controller optimization process for airborne wind energy systems (AWEs) that fuses numerical optimization with lab-scale experimental results. The methodology introduced in this paper, referred to as experimentally-infused optimization, addresses several challenges faced by AWE system designers, including a strong coupling between the controller and plant design, significant modeling uncertainties (which require the use of experiments), and high costs associated with full-scale experimental prototypes. This paper presents an initial case study of the proposed experimentally-infused optimization, where experiments were conducted on a 1/100th-scale model of Altaeros Buoyant Air Turbine (BAT), which was tethered and flown in the University of North Carolina at Charlotte 1m × 1m water channel. The lab-scale experimental platform reduced the cost of evaluating flight dynamics and control by more than two orders of magnitude, while resulting in substantially improved flight performance, quantified by a 15.2 percent improvement in an objective function value, as compared to a purely numerical optimization.