低温和室温Si MOS, GaN, InGaAs和p-diamond HEMT terafet的紧凑设计模型

M. Shur, J. Mikalopas, G. Aizin
{"title":"低温和室温Si MOS, GaN, InGaAs和p-diamond HEMT terafet的紧凑设计模型","authors":"M. Shur, J. Mikalopas, G. Aizin","doi":"10.1109/RWS45077.2020.9050137","DOIUrl":null,"url":null,"abstract":"The plasmonic field effect transistors structures (TeraFETs) with the varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. The constant plasma velocity and variable electron drift velocity lead to the resonant excitation of the unstable plasma modes in the repeated sections of the varying width resulting in a strong enhancement of the plasmonic instability. This instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can efficiently couple to the terahertz (THz) electromagnetic radiation due to the periodic geometry of the gated structure. Our modeling shows that such THz devices could be implemented at room temperature and at 77 K using 22 nm and 65 nm Si MOS technology. At cryogenic temperatures, plasmonic structures fabricated using standard Si MOS technology should exhibit superior performance in a wide frequency range (from 300 GHz to a few THz). A still better performance at room temperature could be achieved using 22 nm and 65 nm GaN and 22 nm, 65 nm, and even 130 nm p-diamond TeraFETs.","PeriodicalId":184822,"journal":{"name":"2020 IEEE Radio and Wireless Symposium (RWS)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Compact Design Models of Cryo and Room Temperature Si MOS, GaN, InGaAs, and p-diamond HEMT TeraFETs\",\"authors\":\"M. Shur, J. Mikalopas, G. Aizin\",\"doi\":\"10.1109/RWS45077.2020.9050137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plasmonic field effect transistors structures (TeraFETs) with the varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. The constant plasma velocity and variable electron drift velocity lead to the resonant excitation of the unstable plasma modes in the repeated sections of the varying width resulting in a strong enhancement of the plasmonic instability. This instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can efficiently couple to the terahertz (THz) electromagnetic radiation due to the periodic geometry of the gated structure. Our modeling shows that such THz devices could be implemented at room temperature and at 77 K using 22 nm and 65 nm Si MOS technology. At cryogenic temperatures, plasmonic structures fabricated using standard Si MOS technology should exhibit superior performance in a wide frequency range (from 300 GHz to a few THz). A still better performance at room temperature could be achieved using 22 nm and 65 nm GaN and 22 nm, 65 nm, and even 130 nm p-diamond TeraFETs.\",\"PeriodicalId\":184822,\"journal\":{\"name\":\"2020 IEEE Radio and Wireless Symposium (RWS)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Radio and Wireless Symposium (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS45077.2020.9050137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS45077.2020.9050137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

变宽的等离子体场效应晶体管结构(TeraFETs)允许在保持等离子体速度不变的情况下调制电子漂移速度。恒定的等离子体速度和可变的电子漂移速度导致在变宽的重复部分的不稳定等离子体模式的共振激发,导致等离子体不稳定性的强烈增强。这种不稳定性涉及等离子体波携带的振荡偶极子电荷。由于门控结构的周期性几何特性,等离子体可以有效地与太赫兹(THz)电磁辐射耦合。我们的模型表明,这种太赫兹器件可以在室温和77 K下使用22 nm和65 nm Si MOS技术实现。在低温下,使用标准Si MOS技术制造的等离子体结构应该在宽频率范围内(从300 GHz到几太赫兹)表现出卓越的性能。使用22 nm和65 nm GaN以及22 nm、65 nm甚至130 nm p-金刚石的terafet可以在室温下获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact Design Models of Cryo and Room Temperature Si MOS, GaN, InGaAs, and p-diamond HEMT TeraFETs
The plasmonic field effect transistors structures (TeraFETs) with the varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. The constant plasma velocity and variable electron drift velocity lead to the resonant excitation of the unstable plasma modes in the repeated sections of the varying width resulting in a strong enhancement of the plasmonic instability. This instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can efficiently couple to the terahertz (THz) electromagnetic radiation due to the periodic geometry of the gated structure. Our modeling shows that such THz devices could be implemented at room temperature and at 77 K using 22 nm and 65 nm Si MOS technology. At cryogenic temperatures, plasmonic structures fabricated using standard Si MOS technology should exhibit superior performance in a wide frequency range (from 300 GHz to a few THz). A still better performance at room temperature could be achieved using 22 nm and 65 nm GaN and 22 nm, 65 nm, and even 130 nm p-diamond TeraFETs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信