主动机器学习测试自动驾驶

K. Meinke
{"title":"主动机器学习测试自动驾驶","authors":"K. Meinke","doi":"10.1109/ICSTW52544.2021.00055","DOIUrl":null,"url":null,"abstract":"Autonomous driving represents a significant challenge to all software quality assurance techniques, including testing. Generative machine learning (ML) techniques including active ML have considerable potential to generate high quality synthetic test data that can complement and improve on existing techniques such as hardware-in-the-loop and road testing.","PeriodicalId":371680,"journal":{"name":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Active Machine Learning to Test Autonomous Driving\",\"authors\":\"K. Meinke\",\"doi\":\"10.1109/ICSTW52544.2021.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous driving represents a significant challenge to all software quality assurance techniques, including testing. Generative machine learning (ML) techniques including active ML have considerable potential to generate high quality synthetic test data that can complement and improve on existing techniques such as hardware-in-the-loop and road testing.\",\"PeriodicalId\":371680,\"journal\":{\"name\":\"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTW52544.2021.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTW52544.2021.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动驾驶对包括测试在内的所有软件质量保证技术构成了重大挑战。包括主动机器学习在内的生成式机器学习(ML)技术在生成高质量的综合测试数据方面具有相当大的潜力,可以补充和改进现有技术,如硬件在环和道路测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Machine Learning to Test Autonomous Driving
Autonomous driving represents a significant challenge to all software quality assurance techniques, including testing. Generative machine learning (ML) techniques including active ML have considerable potential to generate high quality synthetic test data that can complement and improve on existing techniques such as hardware-in-the-loop and road testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信