可接受组的定义字段

D. Neftin, U. Vishne
{"title":"可接受组的定义字段","authors":"D. Neftin, U. Vishne","doi":"10.51286/albjm/1693956885","DOIUrl":null,"url":null,"abstract":"A finite group G is admissible over a field M if there is a division algebra whose center is M with a maximal subfield G-Galois over M. We consider nine possible notions of being admissible over M with respect to a subfield K of M, where the division algebra, the maximal subfield or the Galois group are asserted to be defined over K. We completely determine the logical implications between all variants.","PeriodicalId":309211,"journal":{"name":"Albanian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FIELDS OF DEFINITION FOR ADMISSIBLE GROUPS\",\"authors\":\"D. Neftin, U. Vishne\",\"doi\":\"10.51286/albjm/1693956885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite group G is admissible over a field M if there is a division algebra whose center is M with a maximal subfield G-Galois over M. We consider nine possible notions of being admissible over M with respect to a subfield K of M, where the division algebra, the maximal subfield or the Galois group are asserted to be defined over K. We completely determine the logical implications between all variants.\",\"PeriodicalId\":309211,\"journal\":{\"name\":\"Albanian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Albanian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51286/albjm/1693956885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Albanian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51286/albjm/1693956885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果有一个以M为中心的除法代数,且在M上有一个极大子域G-伽罗瓦,则有限群G在域M上是可容许的。我们考虑了M的子域K在M上可容许的九种可能的概念,其中在K上可以断言除法代数、极大子域或伽罗瓦群是有定义的。我们完全确定了所有变体之间的逻辑含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FIELDS OF DEFINITION FOR ADMISSIBLE GROUPS
A finite group G is admissible over a field M if there is a division algebra whose center is M with a maximal subfield G-Galois over M. We consider nine possible notions of being admissible over M with respect to a subfield K of M, where the division algebra, the maximal subfield or the Galois group are asserted to be defined over K. We completely determine the logical implications between all variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信