渐近最优模型选择与神经网络

A. Barron
{"title":"渐近最优模型选择与神经网络","authors":"A. Barron","doi":"10.1109/WITS.1994.513871","DOIUrl":null,"url":null,"abstract":"A minimum description length criterion for inference of functions in both parametric and nonparametric settings is determined. By adapting the parameter precision, a description length criterion can take on the form log(likelihood)+const/spl middot/m instead of the familiar -log(likelihood)+(m/2)log n where m is the number of parameters and n is the sample size. For certain regular models the criterion yields asymptotically optimal rates for coding redundancy and statistical risk. Moreover, the convergence is adaptive in the sense that the rates are simultaneously minimax optimal in various parametric and nonparametric function classes without prior knowledge of which function class contains the true function. This one criterion combines positive benefits of information-theoretic criteria proposed by Rissanen, Akaike, and Schwarz. A reviewed is also includes of how the minimum description length principle provides accurate estimates in irregular models such as neural nets.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotically optimal model selection and neural nets\",\"authors\":\"A. Barron\",\"doi\":\"10.1109/WITS.1994.513871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A minimum description length criterion for inference of functions in both parametric and nonparametric settings is determined. By adapting the parameter precision, a description length criterion can take on the form log(likelihood)+const/spl middot/m instead of the familiar -log(likelihood)+(m/2)log n where m is the number of parameters and n is the sample size. For certain regular models the criterion yields asymptotically optimal rates for coding redundancy and statistical risk. Moreover, the convergence is adaptive in the sense that the rates are simultaneously minimax optimal in various parametric and nonparametric function classes without prior knowledge of which function class contains the true function. This one criterion combines positive benefits of information-theoretic criteria proposed by Rissanen, Akaike, and Schwarz. A reviewed is also includes of how the minimum description length principle provides accurate estimates in irregular models such as neural nets.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

确定了函数在参数和非参数条件下推理的最小描述长度准则。通过调整参数精度,描述长度标准可以采用log(likelihood)+const/spl middot/m的形式,而不是熟悉的-log(likelihood)+(m/2)log n,其中m是参数数,n是样本量。对于某些正则模型,该准则给出了编码冗余和统计风险的渐近最优率。此外,收敛性是自适应的,在各种参数和非参数函数类中,速率同时是极小极大最优的,而不需要事先知道哪个函数类包含真函数。这一标准结合了Rissanen、Akaike和Schwarz提出的信息论标准的积极好处。本文还回顾了最小描述长度原理如何在不规则模型(如神经网络)中提供准确的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotically optimal model selection and neural nets
A minimum description length criterion for inference of functions in both parametric and nonparametric settings is determined. By adapting the parameter precision, a description length criterion can take on the form log(likelihood)+const/spl middot/m instead of the familiar -log(likelihood)+(m/2)log n where m is the number of parameters and n is the sample size. For certain regular models the criterion yields asymptotically optimal rates for coding redundancy and statistical risk. Moreover, the convergence is adaptive in the sense that the rates are simultaneously minimax optimal in various parametric and nonparametric function classes without prior knowledge of which function class contains the true function. This one criterion combines positive benefits of information-theoretic criteria proposed by Rissanen, Akaike, and Schwarz. A reviewed is also includes of how the minimum description length principle provides accurate estimates in irregular models such as neural nets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信