视觉辅助假手抓取动作的目标预测与时间定位

Xu Shi, Wei Xu, Weichao Guo, X. Sheng
{"title":"视觉辅助假手抓取动作的目标预测与时间定位","authors":"Xu Shi, Wei Xu, Weichao Guo, X. Sheng","doi":"10.1109/ROBIO55434.2022.10011751","DOIUrl":null,"url":null,"abstract":"With the development of shared control technology for humanoid prosthetic hands, more and more research is focused on vision-based machine decision making. In this paper, we propose a miniaturized eye-in-hand target object prediction and action decision-making framework for the humanoid hand “approach-grasp” sequence. Our prediction system can simultaneously predict the target object and detect temporal localization of the grasp action. The system is divided into three main modules: feature logging, target filtering and grasp triggering. In this paper, the optimal configuration of the hyper-parameters designed in each module is performed experimentally. We also propose a prediction quality assessment method for “approach-grasp” behavior, including instance level, sequence level and action decision level. With the optimal hyper-parameter configuration, the predicting system perform averagely to 0.854 at instance prediction accuracy (IP), 0.643 at grasp action prediction accuracy (GP). It also has good predictive stability for most classes of objects with number of predicting changes (NPC) below 6.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Target prediction and temporal localization of grasping action for vision-assisted prosthetic hand\",\"authors\":\"Xu Shi, Wei Xu, Weichao Guo, X. Sheng\",\"doi\":\"10.1109/ROBIO55434.2022.10011751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of shared control technology for humanoid prosthetic hands, more and more research is focused on vision-based machine decision making. In this paper, we propose a miniaturized eye-in-hand target object prediction and action decision-making framework for the humanoid hand “approach-grasp” sequence. Our prediction system can simultaneously predict the target object and detect temporal localization of the grasp action. The system is divided into three main modules: feature logging, target filtering and grasp triggering. In this paper, the optimal configuration of the hyper-parameters designed in each module is performed experimentally. We also propose a prediction quality assessment method for “approach-grasp” behavior, including instance level, sequence level and action decision level. With the optimal hyper-parameter configuration, the predicting system perform averagely to 0.854 at instance prediction accuracy (IP), 0.643 at grasp action prediction accuracy (GP). It also has good predictive stability for most classes of objects with number of predicting changes (NPC) below 6.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10011751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着仿人假肢共享控制技术的发展,基于视觉的机器决策越来越受到人们的关注。在本文中,我们提出了一个小型的眼手目标物体预测和行动决策框架,用于人形手“接近-抓取”序列。我们的预测系统可以同时预测目标物体和检测抓取动作的时间定位。系统分为特征记录、目标滤波和抓取触发三个主要模块。本文通过实验对各模块设计的超参数进行了优化配置。提出了一种“接近-把握”行为的预测质量评价方法,包括实例级、序列级和行动决策级。在最优超参数配置下,预测系统的实例预测精度(IP)平均为0.854,抓取动作预测精度(GP)平均为0.643。对于预测变化数(NPC)小于6的大多数类别的对象,该方法也具有良好的预测稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target prediction and temporal localization of grasping action for vision-assisted prosthetic hand
With the development of shared control technology for humanoid prosthetic hands, more and more research is focused on vision-based machine decision making. In this paper, we propose a miniaturized eye-in-hand target object prediction and action decision-making framework for the humanoid hand “approach-grasp” sequence. Our prediction system can simultaneously predict the target object and detect temporal localization of the grasp action. The system is divided into three main modules: feature logging, target filtering and grasp triggering. In this paper, the optimal configuration of the hyper-parameters designed in each module is performed experimentally. We also propose a prediction quality assessment method for “approach-grasp” behavior, including instance level, sequence level and action decision level. With the optimal hyper-parameter configuration, the predicting system perform averagely to 0.854 at instance prediction accuracy (IP), 0.643 at grasp action prediction accuracy (GP). It also has good predictive stability for most classes of objects with number of predicting changes (NPC) below 6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信