基于分辨率退化和插值调制方法的图像融合

Wanshou Jiang, Yuan Yan, Feng Zhang, Huixian Wang
{"title":"基于分辨率退化和插值调制方法的图像融合","authors":"Wanshou Jiang, Yuan Yan, Feng Zhang, Huixian Wang","doi":"10.1109/GEOINFORMATICS.2011.5980849","DOIUrl":null,"url":null,"abstract":"This paper aims at developing a fusion method based on SVR (Synthetic Variable Ratio) to preserve spatial details and spectral characteristics in image fusion processing, coupling several experiments are conducted for different kinds of sensors (ETM+, QuickBird), and fusion performance evaluation results show that this method is not related to sensor type, spectral region of images and number of multispectral bands, and is more effective than other traditional fusion method in several aspects.","PeriodicalId":413886,"journal":{"name":"2011 19th International Conference on Geoinformatics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image fusion based on modulation method with resolution degradation and interpolation\",\"authors\":\"Wanshou Jiang, Yuan Yan, Feng Zhang, Huixian Wang\",\"doi\":\"10.1109/GEOINFORMATICS.2011.5980849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at developing a fusion method based on SVR (Synthetic Variable Ratio) to preserve spatial details and spectral characteristics in image fusion processing, coupling several experiments are conducted for different kinds of sensors (ETM+, QuickBird), and fusion performance evaluation results show that this method is not related to sensor type, spectral region of images and number of multispectral bands, and is more effective than other traditional fusion method in several aspects.\",\"PeriodicalId\":413886,\"journal\":{\"name\":\"2011 19th International Conference on Geoinformatics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 19th International Conference on Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEOINFORMATICS.2011.5980849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEOINFORMATICS.2011.5980849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在开发一种基于SVR (Synthetic Variable Ratio,合成可变比)的融合方法,在图像融合处理中保留空间细节和光谱特征,并对不同类型的传感器(ETM+、QuickBird)进行了多次耦合实验,融合性能评价结果表明,该方法与传感器类型、图像光谱区域和多光谱带数无关,在多个方面都比其他传统融合方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image fusion based on modulation method with resolution degradation and interpolation
This paper aims at developing a fusion method based on SVR (Synthetic Variable Ratio) to preserve spatial details and spectral characteristics in image fusion processing, coupling several experiments are conducted for different kinds of sensors (ETM+, QuickBird), and fusion performance evaluation results show that this method is not related to sensor type, spectral region of images and number of multispectral bands, and is more effective than other traditional fusion method in several aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信