利用遗传算法进行监督概念学习

W. Spears, K. A. Jong
{"title":"利用遗传算法进行监督概念学习","authors":"W. Spears, K. A. Jong","doi":"10.1109/TAI.1990.130359","DOIUrl":null,"url":null,"abstract":"The authors consider the application of a genetic algorithm (GA) to a symbolic learning task namely, supervised concept learning from examples. A GA concept learner, GABL, that learns a concept from a set of positive and negative examples is implemented. GABL is run in a batch-incremental mode to facilitate comparison with an incremental concept learner, ID5R. Preliminary results show that, despite minimal system bias, GABL is an effective concept learner and is quite competitive with ID5R as the target concept increases in complexity.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Using genetic algorithms for supervised concept learning\",\"authors\":\"W. Spears, K. A. Jong\",\"doi\":\"10.1109/TAI.1990.130359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors consider the application of a genetic algorithm (GA) to a symbolic learning task namely, supervised concept learning from examples. A GA concept learner, GABL, that learns a concept from a set of positive and negative examples is implemented. GABL is run in a batch-incremental mode to facilitate comparison with an incremental concept learner, ID5R. Preliminary results show that, despite minimal system bias, GABL is an effective concept learner and is quite competitive with ID5R as the target concept increases in complexity.<<ETX>>\",\"PeriodicalId\":366276,\"journal\":{\"name\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1990.130359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

作者考虑将遗传算法(GA)应用于符号学习任务,即从实例中监督概念学习。实现了一种遗传概念学习器GABL,它从一组正例和负例中学习一个概念。GABL以批量增量模式运行,以便与增量概念学习器ID5R进行比较。初步结果表明,尽管系统偏差很小,但GABL是一种有效的概念学习器,随着目标概念复杂性的增加,GABL与ID5R相当有竞争力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using genetic algorithms for supervised concept learning
The authors consider the application of a genetic algorithm (GA) to a symbolic learning task namely, supervised concept learning from examples. A GA concept learner, GABL, that learns a concept from a set of positive and negative examples is implemented. GABL is run in a batch-incremental mode to facilitate comparison with an incremental concept learner, ID5R. Preliminary results show that, despite minimal system bias, GABL is an effective concept learner and is quite competitive with ID5R as the target concept increases in complexity.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信