Syifa Rahmawati Hakim, M. Rizki, F NovalIrgiZekha, Nurhidayatul Fitri, A YolandaRizkie, Rani Nooraeni
{"title":"INSTAGRAM用户对KEMDIKBUD用支持机(SVM)方法帮助限额互联网的政策的看法分析","authors":"Syifa Rahmawati Hakim, M. Rizki, F NovalIrgiZekha, Nurhidayatul Fitri, A YolandaRizkie, Rani Nooraeni","doi":"10.24252/MSA.V8I2.16795","DOIUrl":null,"url":null,"abstract":"COVID-19 merupakan suatu pandemi baru yang disebabkan oleh coronavirus dan banyak memberikan dampak salah satunya pada dunia pendidikan sehingga mengharuskan menggunakan sistem pembelajaran jarak jauh. Untuk mendukung sistem tersebut, pemerintah Indonesia melalui Kemdikbud memberikan bantuan kepada peserta didik dan tenaga pendidik berupa bantuan kuota internet. Sebagian masyarakat menyampaikan tanggapan dan opininya mengenai bantuan kuota yang disediakan pemerintah di media sosial salah satunya Instagram. Opini-opini tersebut dimanfaatkan untuk mengetahui penilaian masyarakat terhadap bantuan kuota apakah positif atau negatif dengan menggunakan analisis sentimen. Data yang digunakan pada penelitian ini adalah data komentar pengguna instagram di 7 unggahan akun @kemdikbud.ri yang berkaitan dengan bantuan kuota internet mulai tanggal 27 Agustus – 30 September 2020 yang diperoleh melalui scraping sehingga didapatkan sebanyak 4520 komentar yang kemudian diolah dengan melakukan text preprocessing dan diklasifikasikan menggunakan algoritma support vector machine. Hasil dari tahapan preprocessing sebanyak 32.81% (1483 komentar) data siap digunakan untuk analisis sentimen. Setelah dilakukan analisis klasifikasi didapatkan model yang digunakan yaitu tipe C-Classification, dimana model pendekatan yang digunakan adalah SVM-Kernel Radial (Radial Basis Function) dan menghasilkan persentase komentar berupa sentimen positif sebanyak 61.5%. Model SVM Radian (RBF) mampu melakukan pengklasifikasian respons pengguna Instagram terkait pemberian bantuan kuota internet dengan cukup baik. Hal tersebut dibuktikan dengan nilai evaluasi model berupa tingkat akurasi seebsar 79.67%, sensitivitas sebesar 78.89%, dan spesifisitas sebesar 81.82%.","PeriodicalId":429664,"journal":{"name":"Jurnal MSA ( Matematika dan Statistika serta Aplikasinya )","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ANALISIS SENTIMEN PENGGUNA INSTAGRAM TERHADAP KEBIJAKAN KEMDIKBUD MENGENAI BANTUAN KUOTA INTERNET DENGAN METODE SUPPORT VECTOR MACHINE (SVM)\",\"authors\":\"Syifa Rahmawati Hakim, M. Rizki, F NovalIrgiZekha, Nurhidayatul Fitri, A YolandaRizkie, Rani Nooraeni\",\"doi\":\"10.24252/MSA.V8I2.16795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 merupakan suatu pandemi baru yang disebabkan oleh coronavirus dan banyak memberikan dampak salah satunya pada dunia pendidikan sehingga mengharuskan menggunakan sistem pembelajaran jarak jauh. Untuk mendukung sistem tersebut, pemerintah Indonesia melalui Kemdikbud memberikan bantuan kepada peserta didik dan tenaga pendidik berupa bantuan kuota internet. Sebagian masyarakat menyampaikan tanggapan dan opininya mengenai bantuan kuota yang disediakan pemerintah di media sosial salah satunya Instagram. Opini-opini tersebut dimanfaatkan untuk mengetahui penilaian masyarakat terhadap bantuan kuota apakah positif atau negatif dengan menggunakan analisis sentimen. Data yang digunakan pada penelitian ini adalah data komentar pengguna instagram di 7 unggahan akun @kemdikbud.ri yang berkaitan dengan bantuan kuota internet mulai tanggal 27 Agustus – 30 September 2020 yang diperoleh melalui scraping sehingga didapatkan sebanyak 4520 komentar yang kemudian diolah dengan melakukan text preprocessing dan diklasifikasikan menggunakan algoritma support vector machine. Hasil dari tahapan preprocessing sebanyak 32.81% (1483 komentar) data siap digunakan untuk analisis sentimen. Setelah dilakukan analisis klasifikasi didapatkan model yang digunakan yaitu tipe C-Classification, dimana model pendekatan yang digunakan adalah SVM-Kernel Radial (Radial Basis Function) dan menghasilkan persentase komentar berupa sentimen positif sebanyak 61.5%. Model SVM Radian (RBF) mampu melakukan pengklasifikasian respons pengguna Instagram terkait pemberian bantuan kuota internet dengan cukup baik. Hal tersebut dibuktikan dengan nilai evaluasi model berupa tingkat akurasi seebsar 79.67%, sensitivitas sebesar 78.89%, dan spesifisitas sebesar 81.82%.\",\"PeriodicalId\":429664,\"journal\":{\"name\":\"Jurnal MSA ( Matematika dan Statistika serta Aplikasinya )\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal MSA ( Matematika dan Statistika serta Aplikasinya )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24252/MSA.V8I2.16795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal MSA ( Matematika dan Statistika serta Aplikasinya )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24252/MSA.V8I2.16795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ANALISIS SENTIMEN PENGGUNA INSTAGRAM TERHADAP KEBIJAKAN KEMDIKBUD MENGENAI BANTUAN KUOTA INTERNET DENGAN METODE SUPPORT VECTOR MACHINE (SVM)
COVID-19 merupakan suatu pandemi baru yang disebabkan oleh coronavirus dan banyak memberikan dampak salah satunya pada dunia pendidikan sehingga mengharuskan menggunakan sistem pembelajaran jarak jauh. Untuk mendukung sistem tersebut, pemerintah Indonesia melalui Kemdikbud memberikan bantuan kepada peserta didik dan tenaga pendidik berupa bantuan kuota internet. Sebagian masyarakat menyampaikan tanggapan dan opininya mengenai bantuan kuota yang disediakan pemerintah di media sosial salah satunya Instagram. Opini-opini tersebut dimanfaatkan untuk mengetahui penilaian masyarakat terhadap bantuan kuota apakah positif atau negatif dengan menggunakan analisis sentimen. Data yang digunakan pada penelitian ini adalah data komentar pengguna instagram di 7 unggahan akun @kemdikbud.ri yang berkaitan dengan bantuan kuota internet mulai tanggal 27 Agustus – 30 September 2020 yang diperoleh melalui scraping sehingga didapatkan sebanyak 4520 komentar yang kemudian diolah dengan melakukan text preprocessing dan diklasifikasikan menggunakan algoritma support vector machine. Hasil dari tahapan preprocessing sebanyak 32.81% (1483 komentar) data siap digunakan untuk analisis sentimen. Setelah dilakukan analisis klasifikasi didapatkan model yang digunakan yaitu tipe C-Classification, dimana model pendekatan yang digunakan adalah SVM-Kernel Radial (Radial Basis Function) dan menghasilkan persentase komentar berupa sentimen positif sebanyak 61.5%. Model SVM Radian (RBF) mampu melakukan pengklasifikasian respons pengguna Instagram terkait pemberian bantuan kuota internet dengan cukup baik. Hal tersebut dibuktikan dengan nilai evaluasi model berupa tingkat akurasi seebsar 79.67%, sensitivitas sebesar 78.89%, dan spesifisitas sebesar 81.82%.