{"title":"基于Gabor滤波和粗糙聚类的边缘检测","authors":"Chandranath Adak","doi":"10.1109/ICHCI-IEEE.2013.6887768","DOIUrl":null,"url":null,"abstract":"This paper introduces an efficient edge detection method based on Gabor filter and rough clustering. The input image is smoothed by Gabor function, and the concept of rough clustering is used to focus on edge detection with soft computational approach. Hysteresis thresholding is used to get the actual output, i.e. edges of the input image. To show the effectiveness, the proposed technique is compared with some other edge detection methods.","PeriodicalId":419263,"journal":{"name":"2013 International Conference on Human Computer Interactions (ICHCI)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Gabor filter and rough clustering based edge detection\",\"authors\":\"Chandranath Adak\",\"doi\":\"10.1109/ICHCI-IEEE.2013.6887768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an efficient edge detection method based on Gabor filter and rough clustering. The input image is smoothed by Gabor function, and the concept of rough clustering is used to focus on edge detection with soft computational approach. Hysteresis thresholding is used to get the actual output, i.e. edges of the input image. To show the effectiveness, the proposed technique is compared with some other edge detection methods.\",\"PeriodicalId\":419263,\"journal\":{\"name\":\"2013 International Conference on Human Computer Interactions (ICHCI)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Human Computer Interactions (ICHCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHCI-IEEE.2013.6887768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Human Computer Interactions (ICHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHCI-IEEE.2013.6887768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gabor filter and rough clustering based edge detection
This paper introduces an efficient edge detection method based on Gabor filter and rough clustering. The input image is smoothed by Gabor function, and the concept of rough clustering is used to focus on edge detection with soft computational approach. Hysteresis thresholding is used to get the actual output, i.e. edges of the input image. To show the effectiveness, the proposed technique is compared with some other edge detection methods.