基于Carrera统一公式的弹性结构大变形分析

E. Carrera, A. Pagani, Bin Wu, M. Filippi
{"title":"基于Carrera统一公式的弹性结构大变形分析","authors":"E. Carrera, A. Pagani, Bin Wu, M. Filippi","doi":"10.1115/imece2019-11364","DOIUrl":null,"url":null,"abstract":"Based on the well-known nonlinear hyperelasticity theory and by using the Carrera Unified Formulation (CUF) as well as a total Lagrangian approach, the unified theory of slightly compressible elastomeric structures including geometrical and physical nonlinearities is developed in this work. By exploiting CUF, the principle of virtual work and a finite element approximation, nonlinear governing equations corresponding to the slightly compressible elastomeric structures are straightforwardly formulated in terms of the fundamental nuclei, which are independent of the theory approximation order. Accordingly, the explicit forms of the secant and tangent stiffness matrices of the unified 1D beam and 2D plate elements are derived by using the three-dimensional Cauchy-Green deformation tensor and the nonlinear constitutive equation for slightly incompressible hyperelastic materials. Several numerical assessments are conducted, including uniaxial tension nonlinear response of rectangular elastomeric beams. Our numerical findings demonstrate the capabilities of the CUF model to calculate the large-deformation equilibrium curves as well as the stress distributions with high accuracy.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large-Deformation Analysis of Elastomeric Structures by Carrera Unified Formulation\",\"authors\":\"E. Carrera, A. Pagani, Bin Wu, M. Filippi\",\"doi\":\"10.1115/imece2019-11364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the well-known nonlinear hyperelasticity theory and by using the Carrera Unified Formulation (CUF) as well as a total Lagrangian approach, the unified theory of slightly compressible elastomeric structures including geometrical and physical nonlinearities is developed in this work. By exploiting CUF, the principle of virtual work and a finite element approximation, nonlinear governing equations corresponding to the slightly compressible elastomeric structures are straightforwardly formulated in terms of the fundamental nuclei, which are independent of the theory approximation order. Accordingly, the explicit forms of the secant and tangent stiffness matrices of the unified 1D beam and 2D plate elements are derived by using the three-dimensional Cauchy-Green deformation tensor and the nonlinear constitutive equation for slightly incompressible hyperelastic materials. Several numerical assessments are conducted, including uniaxial tension nonlinear response of rectangular elastomeric beams. Our numerical findings demonstrate the capabilities of the CUF model to calculate the large-deformation equilibrium curves as well as the stress distributions with high accuracy.\",\"PeriodicalId\":119220,\"journal\":{\"name\":\"Volume 1: Advances in Aerospace Technology\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-11364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文以著名的非线性超弹性理论为基础,利用Carrera统一公式(CUF)和全拉格朗日方法,建立了包含几何和物理非线性的微可压缩弹性结构的统一理论。利用CUF、虚功原理和有限元近似,用独立于理论近似顺序的基本核直接表示了微可压缩弹性结构的非线性控制方程。据此,利用三维柯西-格林变形张量和微不可压超弹性材料的非线性本构方程,导出了统一的一维梁和二维板单元的割线和切线刚度矩阵的显式形式。对矩形弹性梁的单轴受拉非线性响应进行了数值计算。数值结果表明,该模型能够高精度地计算大变形平衡曲线和应力分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Deformation Analysis of Elastomeric Structures by Carrera Unified Formulation
Based on the well-known nonlinear hyperelasticity theory and by using the Carrera Unified Formulation (CUF) as well as a total Lagrangian approach, the unified theory of slightly compressible elastomeric structures including geometrical and physical nonlinearities is developed in this work. By exploiting CUF, the principle of virtual work and a finite element approximation, nonlinear governing equations corresponding to the slightly compressible elastomeric structures are straightforwardly formulated in terms of the fundamental nuclei, which are independent of the theory approximation order. Accordingly, the explicit forms of the secant and tangent stiffness matrices of the unified 1D beam and 2D plate elements are derived by using the three-dimensional Cauchy-Green deformation tensor and the nonlinear constitutive equation for slightly incompressible hyperelastic materials. Several numerical assessments are conducted, including uniaxial tension nonlinear response of rectangular elastomeric beams. Our numerical findings demonstrate the capabilities of the CUF model to calculate the large-deformation equilibrium curves as well as the stress distributions with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信