放电诱发ESP电机轴承故障

Zheng Ye, Spence Wilcox
{"title":"放电诱发ESP电机轴承故障","authors":"Zheng Ye, Spence Wilcox","doi":"10.2118/191688-MS","DOIUrl":null,"url":null,"abstract":"\n Motor bearings are a critical component in electric submersible pumping systems (ESP) motors. In many cases, dismantle analyses are unable to identify a definitive root cause for bearing failure. Several hypotheses have been studied to explain motor bearing failures. Some applications experience a higher bearing failure rate than other applications. In this paper, typical motor bearing failure modes will be reviewed, more specifically, the source of shaft voltage and the consequence of bearing electrical discharge failure will be discussed.\n During bearing failure root-cause analysis, mechanical components have been the primary focus. Critical thermal expansion coefficients have been verified. The bearing running stress, temperature, eccentricity, film thickness, and lubrication flow have been simulated using cutting-edge finite element analysis (FEA) and computational fluid dynamics (CFD). Results show that in certain material combinations, the incompatibility of the thermal growth of bearing and sleeve material could reduce the running clearance, which would then increase the oil shear loss, and the bearing rubbing. However, tiny pitting has been found in the outside diameters (OD) of cracked bearings returned from the field, with more pitting found on the sleeve ODs. This evidence indicates another bearing failure mode: shaft-induced voltage and bearing electrical discharge.\n The direct consequence of electrical discharge is generation of debris, vaporization of motor oil, quenching of bearing/sleeve surfaces, and increase in surface roughness. The debris size (0.001 in.) is larger than the hydrodynamic film thickness and can score the sleeve surfaces due to the loss of oil film protection. The chain of the motor bearing failure due to the electrical discharge is summarized, and this cannot be ruled out in other sizes, bearing systems, or material combinations in an ESP motor. By duplicating the poor power quality conditions, the pitting phenomenon on sleeve is confirmed. Future measurements have been planned to determine the correlation between the power quality and shaft voltage. This paper discusses the risk level for the bearing electrical discharge based the induced shaft voltage.\n Electrical discharge bearing damage is a widespread problem that has been studied in other industries since 1992. Electrical discharge / shaft voltage problems can occur on any variable-speed drive motor. The source of electrical discharge through the bearing comes from the voltage potential building from the shaft to the ground (motor housing). However, ESP industries, which produce small motors with multiple rotor sections, have not conducted sufficient analysis to understand this problem. This paper fills the gap to discuss detailed indication evidence and analysis that can be used as a toolbox for motor bearing failure analysis for the ESP industry.","PeriodicalId":441169,"journal":{"name":"Day 3 Wed, September 26, 2018","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrical Discharge Induced ESP Motor Bearing Failure\",\"authors\":\"Zheng Ye, Spence Wilcox\",\"doi\":\"10.2118/191688-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Motor bearings are a critical component in electric submersible pumping systems (ESP) motors. In many cases, dismantle analyses are unable to identify a definitive root cause for bearing failure. Several hypotheses have been studied to explain motor bearing failures. Some applications experience a higher bearing failure rate than other applications. In this paper, typical motor bearing failure modes will be reviewed, more specifically, the source of shaft voltage and the consequence of bearing electrical discharge failure will be discussed.\\n During bearing failure root-cause analysis, mechanical components have been the primary focus. Critical thermal expansion coefficients have been verified. The bearing running stress, temperature, eccentricity, film thickness, and lubrication flow have been simulated using cutting-edge finite element analysis (FEA) and computational fluid dynamics (CFD). Results show that in certain material combinations, the incompatibility of the thermal growth of bearing and sleeve material could reduce the running clearance, which would then increase the oil shear loss, and the bearing rubbing. However, tiny pitting has been found in the outside diameters (OD) of cracked bearings returned from the field, with more pitting found on the sleeve ODs. This evidence indicates another bearing failure mode: shaft-induced voltage and bearing electrical discharge.\\n The direct consequence of electrical discharge is generation of debris, vaporization of motor oil, quenching of bearing/sleeve surfaces, and increase in surface roughness. The debris size (0.001 in.) is larger than the hydrodynamic film thickness and can score the sleeve surfaces due to the loss of oil film protection. The chain of the motor bearing failure due to the electrical discharge is summarized, and this cannot be ruled out in other sizes, bearing systems, or material combinations in an ESP motor. By duplicating the poor power quality conditions, the pitting phenomenon on sleeve is confirmed. Future measurements have been planned to determine the correlation between the power quality and shaft voltage. This paper discusses the risk level for the bearing electrical discharge based the induced shaft voltage.\\n Electrical discharge bearing damage is a widespread problem that has been studied in other industries since 1992. Electrical discharge / shaft voltage problems can occur on any variable-speed drive motor. The source of electrical discharge through the bearing comes from the voltage potential building from the shaft to the ground (motor housing). However, ESP industries, which produce small motors with multiple rotor sections, have not conducted sufficient analysis to understand this problem. This paper fills the gap to discuss detailed indication evidence and analysis that can be used as a toolbox for motor bearing failure analysis for the ESP industry.\",\"PeriodicalId\":441169,\"journal\":{\"name\":\"Day 3 Wed, September 26, 2018\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, September 26, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/191688-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, September 26, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191688-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电机轴承是电潜泵系统(ESP)电机的关键部件。在许多情况下,拆卸分析无法确定轴承失效的明确根本原因。已经研究了几种假设来解释电机轴承故障。有些应用比其他应用有更高的轴承故障率。本文将回顾典型的电机轴承失效模式,更具体地说,将讨论轴电压的来源和轴承放电失效的后果。在轴承故障的根本原因分析中,机械部件一直是主要关注的焦点。对临界热膨胀系数进行了验证。采用先进的有限元分析(FEA)和计算流体动力学(CFD)对轴承的运行应力、温度、偏心、油膜厚度和润滑流量进行了模拟。结果表明:在一定的材料组合下,轴承与套筒材料的热生长不相容会减小滑动间隙,从而增加油剪切损失和轴承摩擦;然而,在从现场返回的破裂轴承的外径(OD)中发现了微小的点蚀,在套筒外径上发现了更多的点蚀。这一证据表明另一种轴承失效模式:轴感应电压和轴承放电。放电的直接后果是产生碎片,汽化机油,淬火轴承/套筒表面,并增加表面粗糙度。碎屑尺寸(0.001英寸)大于流体动力膜厚度,由于失去油膜保护,可能会划伤套筒表面。总结了由放电引起的电机轴承故障链,这在ESP电机的其他尺寸、轴承系统或材料组合中也不能排除。通过模拟电能质量差的工况,确认了套筒上的点蚀现象。未来的测量已计划确定电能质量和轴电压之间的相关性。本文讨论了基于感应轴电压的轴承放电风险等级。放电轴承损坏是1992年以来在其他行业研究的一个普遍问题。任何变速驱动电机都可能出现放电/轴电压问题。通过轴承的放电源来自从轴到地(电机外壳)的电压电位建筑。然而,生产多转子小型电机的ESP行业并没有对这一问题进行充分的分析。本文填补了这一空白,讨论了详细的指示证据和分析,可以作为电潜泵行业电机轴承故障分析的工具箱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical Discharge Induced ESP Motor Bearing Failure
Motor bearings are a critical component in electric submersible pumping systems (ESP) motors. In many cases, dismantle analyses are unable to identify a definitive root cause for bearing failure. Several hypotheses have been studied to explain motor bearing failures. Some applications experience a higher bearing failure rate than other applications. In this paper, typical motor bearing failure modes will be reviewed, more specifically, the source of shaft voltage and the consequence of bearing electrical discharge failure will be discussed. During bearing failure root-cause analysis, mechanical components have been the primary focus. Critical thermal expansion coefficients have been verified. The bearing running stress, temperature, eccentricity, film thickness, and lubrication flow have been simulated using cutting-edge finite element analysis (FEA) and computational fluid dynamics (CFD). Results show that in certain material combinations, the incompatibility of the thermal growth of bearing and sleeve material could reduce the running clearance, which would then increase the oil shear loss, and the bearing rubbing. However, tiny pitting has been found in the outside diameters (OD) of cracked bearings returned from the field, with more pitting found on the sleeve ODs. This evidence indicates another bearing failure mode: shaft-induced voltage and bearing electrical discharge. The direct consequence of electrical discharge is generation of debris, vaporization of motor oil, quenching of bearing/sleeve surfaces, and increase in surface roughness. The debris size (0.001 in.) is larger than the hydrodynamic film thickness and can score the sleeve surfaces due to the loss of oil film protection. The chain of the motor bearing failure due to the electrical discharge is summarized, and this cannot be ruled out in other sizes, bearing systems, or material combinations in an ESP motor. By duplicating the poor power quality conditions, the pitting phenomenon on sleeve is confirmed. Future measurements have been planned to determine the correlation between the power quality and shaft voltage. This paper discusses the risk level for the bearing electrical discharge based the induced shaft voltage. Electrical discharge bearing damage is a widespread problem that has been studied in other industries since 1992. Electrical discharge / shaft voltage problems can occur on any variable-speed drive motor. The source of electrical discharge through the bearing comes from the voltage potential building from the shaft to the ground (motor housing). However, ESP industries, which produce small motors with multiple rotor sections, have not conducted sufficient analysis to understand this problem. This paper fills the gap to discuss detailed indication evidence and analysis that can be used as a toolbox for motor bearing failure analysis for the ESP industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信