Jingyu Wu, Mohan Wang, Kehao Zhao, Rongtao Cao, D. Carpenter, G. Zheng, S. Rountree, Kevin P. Chen
{"title":"极端恶劣环境下随机森林模型的岩心温度预测","authors":"Jingyu Wu, Mohan Wang, Kehao Zhao, Rongtao Cao, D. Carpenter, G. Zheng, S. Rountree, Kevin P. Chen","doi":"10.1364/sensors.2022.sm1c.5","DOIUrl":null,"url":null,"abstract":"This paper proposed accurate in-core distributed temperature predictions by random forest modeling based on optical measurements. The prediction error is within 3.6% of the temperature swing in the extremely harsh environment.","PeriodicalId":231405,"journal":{"name":"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-core Temperature Forecasting by Random Forest Modeling in Extreme Harsh Environment\",\"authors\":\"Jingyu Wu, Mohan Wang, Kehao Zhao, Rongtao Cao, D. Carpenter, G. Zheng, S. Rountree, Kevin P. Chen\",\"doi\":\"10.1364/sensors.2022.sm1c.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed accurate in-core distributed temperature predictions by random forest modeling based on optical measurements. The prediction error is within 3.6% of the temperature swing in the extremely harsh environment.\",\"PeriodicalId\":231405,\"journal\":{\"name\":\"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/sensors.2022.sm1c.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/sensors.2022.sm1c.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In-core Temperature Forecasting by Random Forest Modeling in Extreme Harsh Environment
This paper proposed accurate in-core distributed temperature predictions by random forest modeling based on optical measurements. The prediction error is within 3.6% of the temperature swing in the extremely harsh environment.