使用近似匹配工具的相似摘要搜索策略的操作成本分析

V. Moia, M. A. Henriques
{"title":"使用近似匹配工具的相似摘要搜索策略的操作成本分析","authors":"V. Moia, M. A. Henriques","doi":"10.5753/sbseg.2017.19497","DOIUrl":null,"url":null,"abstract":"Approximate matching functions are suitable tools for forensic investigators to detect similarity between two digital objects. With the rapid increase in data storage capacity, these functions appear as candidates to perform Known File Filtering (KFF) efficiently, separating relevant from irrelevant information. However, comparing sets of approximate matching digests can be overwhelming, since the usual approach is by brute force (all-against-all). In this paper, we evaluate some strategies to better perform KFF using approximate matching tools. A detailed analysis of their operational costs when performing over large data sets is done. Our results show significant improvements over brute force and how the strategies scale for different database sizes.","PeriodicalId":322419,"journal":{"name":"Anais do XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2017)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An operational costs analysis of similarity digest search strategies using approximate matching tools\",\"authors\":\"V. Moia, M. A. Henriques\",\"doi\":\"10.5753/sbseg.2017.19497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate matching functions are suitable tools for forensic investigators to detect similarity between two digital objects. With the rapid increase in data storage capacity, these functions appear as candidates to perform Known File Filtering (KFF) efficiently, separating relevant from irrelevant information. However, comparing sets of approximate matching digests can be overwhelming, since the usual approach is by brute force (all-against-all). In this paper, we evaluate some strategies to better perform KFF using approximate matching tools. A detailed analysis of their operational costs when performing over large data sets is done. Our results show significant improvements over brute force and how the strategies scale for different database sizes.\",\"PeriodicalId\":322419,\"journal\":{\"name\":\"Anais do XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2017)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbseg.2017.19497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg.2017.19497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近似匹配函数是法医调查人员检测两个数字对象之间相似性的合适工具。随着数据存储容量的快速增长,这些函数成为有效地进行已知文件过滤(KFF)以分离相关和不相关信息的候选函数。然而,比较近似匹配摘要的集合可能会让人不知所措,因为通常的方法是蛮力(全对全)。在本文中,我们评估了一些使用近似匹配工具来更好地执行KFF的策略。在处理大型数据集时,对其操作成本进行了详细分析。我们的结果显示了相对于暴力破解的显著改进,以及策略如何针对不同的数据库大小进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An operational costs analysis of similarity digest search strategies using approximate matching tools
Approximate matching functions are suitable tools for forensic investigators to detect similarity between two digital objects. With the rapid increase in data storage capacity, these functions appear as candidates to perform Known File Filtering (KFF) efficiently, separating relevant from irrelevant information. However, comparing sets of approximate matching digests can be overwhelming, since the usual approach is by brute force (all-against-all). In this paper, we evaluate some strategies to better perform KFF using approximate matching tools. A detailed analysis of their operational costs when performing over large data sets is done. Our results show significant improvements over brute force and how the strategies scale for different database sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信