具有奇异主子阵的厄米特Toeplitz矩阵的Schur算法

C. Zarowski
{"title":"具有奇异主子阵的厄米特Toeplitz矩阵的Schur算法","authors":"C. Zarowski","doi":"10.1109/PACRIM.1989.48441","DOIUrl":null,"url":null,"abstract":"It is shown to be possible to develop a Schur-type algorithm for Hermitian Toeplitz matrices in the singular case. This algorithm is shown to be amenable to implementation on a parallel processing system consisting of a linear array of O(n) processors. The resulting machine executes the proposed algorithm in O(n) time. It is important to note that the present algorithm and that of Delsarte et al. (1985) are very practical algorithms when the Toeplitz matrix in question has elements over a finite field (as opposed to the field of rational, real, or complex numbers). This is because their is now no problem with errors due to quantization of results.<<ETX>>","PeriodicalId":256287,"journal":{"name":"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Schur algorithm for Hermitian Toeplitz matrices with singular leading principal submatrices\",\"authors\":\"C. Zarowski\",\"doi\":\"10.1109/PACRIM.1989.48441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown to be possible to develop a Schur-type algorithm for Hermitian Toeplitz matrices in the singular case. This algorithm is shown to be amenable to implementation on a parallel processing system consisting of a linear array of O(n) processors. The resulting machine executes the proposed algorithm in O(n) time. It is important to note that the present algorithm and that of Delsarte et al. (1985) are very practical algorithms when the Toeplitz matrix in question has elements over a finite field (as opposed to the field of rational, real, or complex numbers). This is because their is now no problem with errors due to quantization of results.<<ETX>>\",\"PeriodicalId\":256287,\"journal\":{\"name\":\"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.1989.48441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1989.48441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

证明了在奇异情况下对厄米特图普利兹矩阵发展一种schur型算法是可能的。该算法可在由0 (n)个处理器组成的线性阵列并行处理系统上实现。结果机器在O(n)时间内执行所提出的算法。值得注意的是,当前算法和Delsarte等人(1985)的算法是非常实用的算法,当所讨论的Toeplitz矩阵在有限域(与有理数、实数或复数的域相反)上具有元素时。这是因为他们现在不存在由于结果量化而导致的误差问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Schur algorithm for Hermitian Toeplitz matrices with singular leading principal submatrices
It is shown to be possible to develop a Schur-type algorithm for Hermitian Toeplitz matrices in the singular case. This algorithm is shown to be amenable to implementation on a parallel processing system consisting of a linear array of O(n) processors. The resulting machine executes the proposed algorithm in O(n) time. It is important to note that the present algorithm and that of Delsarte et al. (1985) are very practical algorithms when the Toeplitz matrix in question has elements over a finite field (as opposed to the field of rational, real, or complex numbers). This is because their is now no problem with errors due to quantization of results.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信