用草图检测大量交通中的异常情况

S. Pukkawanna, H. Hazeyama, Y. Kadobayashi, S. Yamaguchi
{"title":"用草图检测大量交通中的异常情况","authors":"S. Pukkawanna, H. Hazeyama, Y. Kadobayashi, S. Yamaguchi","doi":"10.1145/2619287.2619301","DOIUrl":null,"url":null,"abstract":"Sketches have been considered as an efficient and scalable structure for processing massive data. In this work, we propose a sketch-based method for detecting anomalies in network traffic. The method divides an IP traffic stream into sub-streams using the sketches and detects anomalies in the sub-streams based on a time-frequency analysis of the sub-stream's entropies. The paper shows detection and false positive rates of the method that was evaluated with real-world 150 Mbps traffic collected at the United States and Japan transit link.","PeriodicalId":409750,"journal":{"name":"International Conference of Future Internet","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting anomalies in massive traffic with sketches\",\"authors\":\"S. Pukkawanna, H. Hazeyama, Y. Kadobayashi, S. Yamaguchi\",\"doi\":\"10.1145/2619287.2619301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sketches have been considered as an efficient and scalable structure for processing massive data. In this work, we propose a sketch-based method for detecting anomalies in network traffic. The method divides an IP traffic stream into sub-streams using the sketches and detects anomalies in the sub-streams based on a time-frequency analysis of the sub-stream's entropies. The paper shows detection and false positive rates of the method that was evaluated with real-world 150 Mbps traffic collected at the United States and Japan transit link.\",\"PeriodicalId\":409750,\"journal\":{\"name\":\"International Conference of Future Internet\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference of Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2619287.2619301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference of Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2619287.2619301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

草图被认为是处理海量数据的一种高效且可扩展的结构。在这项工作中,我们提出了一种基于草图的方法来检测网络流量中的异常。该方法使用草图将IP流划分为子流,并基于子流熵的时频分析来检测子流中的异常。本文展示了该方法的检出率和假阳性率,并对美国和日本中转链路收集的实际150mbps流量进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting anomalies in massive traffic with sketches
Sketches have been considered as an efficient and scalable structure for processing massive data. In this work, we propose a sketch-based method for detecting anomalies in network traffic. The method divides an IP traffic stream into sub-streams using the sketches and detects anomalies in the sub-streams based on a time-frequency analysis of the sub-stream's entropies. The paper shows detection and false positive rates of the method that was evaluated with real-world 150 Mbps traffic collected at the United States and Japan transit link.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信