{"title":"模糊数输入向量的神经网络结构","authors":"H. Ishibuchi, Ryosuke Fujioka, Hideo Tanaka","doi":"10.1109/FUZZY.1992.258597","DOIUrl":null,"url":null,"abstract":"The authors proposed an architecture of multilayer feedforward neural networks for classification problems of fuzzy vectors. A fuzzy input vector is mapped to a fuzzy number by the proposed neural network where the activation function is extended to a fuzzy input-output relation by the extension principle. A learning algorithm is derived from a cost function defined by a target output and the level set of a fuzzy output. The proposed classification method of fuzzy vectors is illustrated by a numerical example.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"An architecture of neural networks for input vectors of fuzzy numbers\",\"authors\":\"H. Ishibuchi, Ryosuke Fujioka, Hideo Tanaka\",\"doi\":\"10.1109/FUZZY.1992.258597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors proposed an architecture of multilayer feedforward neural networks for classification problems of fuzzy vectors. A fuzzy input vector is mapped to a fuzzy number by the proposed neural network where the activation function is extended to a fuzzy input-output relation by the extension principle. A learning algorithm is derived from a cost function defined by a target output and the level set of a fuzzy output. The proposed classification method of fuzzy vectors is illustrated by a numerical example.<<ETX>>\",\"PeriodicalId\":222263,\"journal\":{\"name\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1992.258597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An architecture of neural networks for input vectors of fuzzy numbers
The authors proposed an architecture of multilayer feedforward neural networks for classification problems of fuzzy vectors. A fuzzy input vector is mapped to a fuzzy number by the proposed neural network where the activation function is extended to a fuzzy input-output relation by the extension principle. A learning algorithm is derived from a cost function defined by a target output and the level set of a fuzzy output. The proposed classification method of fuzzy vectors is illustrated by a numerical example.<>