平面图和有界树宽图的反测地线长度计算

Sergio Cabello
{"title":"平面图和有界树宽图的反测地线长度计算","authors":"Sergio Cabello","doi":"10.1145/3501303","DOIUrl":null,"url":null,"abstract":"The inverse geodesic length of a graph G is the sum of the inverse of the distances between all pairs of distinct vertices of G. In some domains, it is known as the Harary index or the global efficiency of the graph. We show that, if G is planar and has n vertices, then the inverse geodesic length of G can be computed in roughly O(n9/5) time. We also show that, if G has n vertices and treewidth at most k, then the inverse geodesic length of G can be computed in O(n log O(k)n) time. In both cases, we use techniques developed for computing the sum of the distances, which does not have “inverse” component, together with batched evaluations of rational functions.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computing the Inverse Geodesic Length in Planar Graphs and Graphs of Bounded Treewidth\",\"authors\":\"Sergio Cabello\",\"doi\":\"10.1145/3501303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inverse geodesic length of a graph G is the sum of the inverse of the distances between all pairs of distinct vertices of G. In some domains, it is known as the Harary index or the global efficiency of the graph. We show that, if G is planar and has n vertices, then the inverse geodesic length of G can be computed in roughly O(n9/5) time. We also show that, if G has n vertices and treewidth at most k, then the inverse geodesic length of G can be computed in O(n log O(k)n) time. In both cases, we use techniques developed for computing the sum of the distances, which does not have “inverse” component, together with batched evaluations of rational functions.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3501303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图G的逆测地线长度是G的所有不同顶点对之间距离的逆的和。在某些领域,它被称为Harary指数或图的全局效率。我们证明,如果G是平面的并且有n个顶点,那么G的逆测地线长度可以在大约O(n9/5)时间内计算出来。我们还证明,如果G有n个顶点且树宽不超过k,那么G的逆测地线长度可以在O(n log O(k)n)时间内计算出来。在这两种情况下,我们使用了用于计算距离和的技术,它没有“逆”成分,以及有理函数的批量评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the Inverse Geodesic Length in Planar Graphs and Graphs of Bounded Treewidth
The inverse geodesic length of a graph G is the sum of the inverse of the distances between all pairs of distinct vertices of G. In some domains, it is known as the Harary index or the global efficiency of the graph. We show that, if G is planar and has n vertices, then the inverse geodesic length of G can be computed in roughly O(n9/5) time. We also show that, if G has n vertices and treewidth at most k, then the inverse geodesic length of G can be computed in O(n log O(k)n) time. In both cases, we use techniques developed for computing the sum of the distances, which does not have “inverse” component, together with batched evaluations of rational functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信