基于粒子群优化的Naïve贝叶斯算法和支持向量机在推特上的月经杯情感分析

Dini Shalikha, A. Alamsyah
{"title":"基于粒子群优化的Naïve贝叶斯算法和支持向量机在推特上的月经杯情感分析","authors":"Dini Shalikha, A. Alamsyah","doi":"10.15294/jaist.v4i2.59561","DOIUrl":null,"url":null,"abstract":"Menstrual cup is a menstrual hygiene sanitation tool that replaces disposable sanitary napkins for women that reaps many pros and cons in its use. From this, it is necessary to analyze the public's views regarding the use of menstrual cups, which is called sentiment analysis. Sentiment analysis is a process that aims to determine the polarity of the sentiment of a text. This paper performs a classification of menstrual cup sentiment analysis on Twitter using the Naïve Bayes and the Support Vector Machine  algorithm. Particle Swarm Optimization is applied to improve the accuracy of both classification algorithms. The final result of the accuracy obtained by the Naïve Bayes algorithm is 92.72% and the Support Vector Machine  algorithm is 96.13%. While the accuracy results after Particle Swarm Optimization is applied, for Naïve Bayes it produces an accuracy rate of 95.87%, and Support Vector Machine is 96.68%.","PeriodicalId":418742,"journal":{"name":"Journal of Advances in Information Systems and Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Accuracy of Naïve Bayes Algorithm and Support Vector Machine Using Particle Swarm Optimization for Menstrual Cup Sentiment Analysis on Twitter\",\"authors\":\"Dini Shalikha, A. Alamsyah\",\"doi\":\"10.15294/jaist.v4i2.59561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Menstrual cup is a menstrual hygiene sanitation tool that replaces disposable sanitary napkins for women that reaps many pros and cons in its use. From this, it is necessary to analyze the public's views regarding the use of menstrual cups, which is called sentiment analysis. Sentiment analysis is a process that aims to determine the polarity of the sentiment of a text. This paper performs a classification of menstrual cup sentiment analysis on Twitter using the Naïve Bayes and the Support Vector Machine  algorithm. Particle Swarm Optimization is applied to improve the accuracy of both classification algorithms. The final result of the accuracy obtained by the Naïve Bayes algorithm is 92.72% and the Support Vector Machine  algorithm is 96.13%. While the accuracy results after Particle Swarm Optimization is applied, for Naïve Bayes it produces an accuracy rate of 95.87%, and Support Vector Machine is 96.68%.\",\"PeriodicalId\":418742,\"journal\":{\"name\":\"Journal of Advances in Information Systems and Technology\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Information Systems and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/jaist.v4i2.59561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Information Systems and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/jaist.v4i2.59561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

月经杯是一种月经卫生卫生工具,它取代了一次性卫生巾,在使用中收获了许多优点和缺点。由此,有必要分析公众对使用月经杯的看法,这就是情感分析。情感分析是一个旨在确定文本情感极性的过程。本文使用Naïve贝叶斯和支持向量机算法对Twitter上的月经杯情绪进行分类分析。采用粒子群算法提高了两种分类算法的准确率。最终,Naïve贝叶斯算法得到的准确率为92.72%,支持向量机算法得到的准确率为96.13%。而采用粒子群优化后的准确率结果,Naïve贝叶斯的准确率为95.87%,支持向量机的准确率为96.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Accuracy of Naïve Bayes Algorithm and Support Vector Machine Using Particle Swarm Optimization for Menstrual Cup Sentiment Analysis on Twitter
Menstrual cup is a menstrual hygiene sanitation tool that replaces disposable sanitary napkins for women that reaps many pros and cons in its use. From this, it is necessary to analyze the public's views regarding the use of menstrual cups, which is called sentiment analysis. Sentiment analysis is a process that aims to determine the polarity of the sentiment of a text. This paper performs a classification of menstrual cup sentiment analysis on Twitter using the Naïve Bayes and the Support Vector Machine  algorithm. Particle Swarm Optimization is applied to improve the accuracy of both classification algorithms. The final result of the accuracy obtained by the Naïve Bayes algorithm is 92.72% and the Support Vector Machine  algorithm is 96.13%. While the accuracy results after Particle Swarm Optimization is applied, for Naïve Bayes it produces an accuracy rate of 95.87%, and Support Vector Machine is 96.68%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信