奇异黑箱矩阵的前置条件

W. Turner
{"title":"奇异黑箱矩阵的前置条件","authors":"W. Turner","doi":"10.1145/1073884.1073930","DOIUrl":null,"url":null,"abstract":"This paper develops preconditioners for singular black box matrix problems. We introduce networks of arbitrary radix switches for matrices of any square dimension, and we show random full Toeplitz matrices are adequate switches for these networks. We also show a random full Toeplitz matrix to satisfy all requirements of the Kaltofen-Saunders black box matrix rank algorithm without requiring a diagonal multiplier.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Preconditioners for singular black box matrices\",\"authors\":\"W. Turner\",\"doi\":\"10.1145/1073884.1073930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops preconditioners for singular black box matrix problems. We introduce networks of arbitrary radix switches for matrices of any square dimension, and we show random full Toeplitz matrices are adequate switches for these networks. We also show a random full Toeplitz matrix to satisfy all requirements of the Kaltofen-Saunders black box matrix rank algorithm without requiring a diagonal multiplier.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文发展了奇异黑箱矩阵问题的预条件。我们引入了任意平方维矩阵的任意基数交换网络,并证明了随机全Toeplitz矩阵是这些网络的适当交换。我们还展示了一个随机的全Toeplitz矩阵,它满足Kaltofen-Saunders黑盒矩阵秩算法的所有要求,而不需要对角乘法器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preconditioners for singular black box matrices
This paper develops preconditioners for singular black box matrix problems. We introduce networks of arbitrary radix switches for matrices of any square dimension, and we show random full Toeplitz matrices are adequate switches for these networks. We also show a random full Toeplitz matrix to satisfy all requirements of the Kaltofen-Saunders black box matrix rank algorithm without requiring a diagonal multiplier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信