一个鲁棒加载重复中值级联消去器

M. Picciolo, K. Gerlach
{"title":"一个鲁棒加载重复中值级联消去器","authors":"M. Picciolo, K. Gerlach","doi":"10.1109/NRC.2004.1316430","DOIUrl":null,"url":null,"abstract":"A robust, fast-converging, reduced-rank adaptive processor is introduced, based on diagonally loading the reiterative median cascaded canceller (RMCC). The new loaded reiterative median cascaded canceller (LRMCC) exhibits the highly desirable combination of: (1) convergence-robustness to outliers/targets/nonstationary data in adaptive weight training data, like the RMCC; (2) convergence performance that is approximately independent of the interference-plus-noise covariance matrix, like the RMCC; and (3) fast convergence at a rate commensurate with reduced-rank algorithms, unlike the RMCC. Measured airborne radar data from the MCARM space-time adaptive processing (STAP) database is used to show performance enhancements. It is concluded that the LRMCC is a practical and highly robust replacement for existing reduced-rank adaptive processors, exhibiting superior performance in nonideal measured data environments.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A robust loaded reiterative median cascaded canceller\",\"authors\":\"M. Picciolo, K. Gerlach\",\"doi\":\"10.1109/NRC.2004.1316430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust, fast-converging, reduced-rank adaptive processor is introduced, based on diagonally loading the reiterative median cascaded canceller (RMCC). The new loaded reiterative median cascaded canceller (LRMCC) exhibits the highly desirable combination of: (1) convergence-robustness to outliers/targets/nonstationary data in adaptive weight training data, like the RMCC; (2) convergence performance that is approximately independent of the interference-plus-noise covariance matrix, like the RMCC; and (3) fast convergence at a rate commensurate with reduced-rank algorithms, unlike the RMCC. Measured airborne radar data from the MCARM space-time adaptive processing (STAP) database is used to show performance enhancements. It is concluded that the LRMCC is a practical and highly robust replacement for existing reduced-rank adaptive processors, exhibiting superior performance in nonideal measured data environments.\",\"PeriodicalId\":268965,\"journal\":{\"name\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2004.1316430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

介绍了一种基于对角加载迭代中值级联消去器(RMCC)的鲁棒、快速收敛、降阶自适应处理器。新的加载迭代中值级联消除器(LRMCC)表现出高度理想的组合:(1)对自适应重量训练数据中的异常值/目标/非平稳数据的收敛-鲁棒性,如RMCC;(2)收敛性能近似独立于干扰加噪声协方差矩阵,如RMCC;(3)与RMCC不同,以与降阶算法相称的速度快速收敛。利用MCARM时空自适应处理(STAP)数据库中的机载雷达实测数据来展示性能的增强。结果表明,LRMCC是现有降阶自适应处理器的一种实用且高度鲁棒的替代品,在非理想的测量数据环境中表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust loaded reiterative median cascaded canceller
A robust, fast-converging, reduced-rank adaptive processor is introduced, based on diagonally loading the reiterative median cascaded canceller (RMCC). The new loaded reiterative median cascaded canceller (LRMCC) exhibits the highly desirable combination of: (1) convergence-robustness to outliers/targets/nonstationary data in adaptive weight training data, like the RMCC; (2) convergence performance that is approximately independent of the interference-plus-noise covariance matrix, like the RMCC; and (3) fast convergence at a rate commensurate with reduced-rank algorithms, unlike the RMCC. Measured airborne radar data from the MCARM space-time adaptive processing (STAP) database is used to show performance enhancements. It is concluded that the LRMCC is a practical and highly robust replacement for existing reduced-rank adaptive processors, exhibiting superior performance in nonideal measured data environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信