CATrack:结合卷积和注意方法的视觉目标跟踪

Qingyang Lu, Hong Zhu, Guangling Yuan, Congli Li, Xiaoyan Qin
{"title":"CATrack:结合卷积和注意方法的视觉目标跟踪","authors":"Qingyang Lu, Hong Zhu, Guangling Yuan, Congli Li, Xiaoyan Qin","doi":"10.1109/AINIT59027.2023.10212501","DOIUrl":null,"url":null,"abstract":"The current popular tracking frameworks prioritize the modeling of global relationships while neglecting research on local feature extraction. This paper introduces CATrack, a novel approach for visual object tracking that integrates convolution and attention into a unified framework. In contrast to prior research, it constructs a tracking module using a unified framework that incorporates convolution and attention as its core components. Our method effectively bridges the gap between the two calculation methods. It improves the ability to extract fundamental features, integrates past experience in the tracking field more effectively, while balancing local and global contextual information. The proposed tracker achieves competitive performance on 5 challenging short-term and long-term benchmarks and can run at real-time speed.","PeriodicalId":276778,"journal":{"name":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CATrack: Combining Convolutional and Attentional Methods for Visual Object Tracking\",\"authors\":\"Qingyang Lu, Hong Zhu, Guangling Yuan, Congli Li, Xiaoyan Qin\",\"doi\":\"10.1109/AINIT59027.2023.10212501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current popular tracking frameworks prioritize the modeling of global relationships while neglecting research on local feature extraction. This paper introduces CATrack, a novel approach for visual object tracking that integrates convolution and attention into a unified framework. In contrast to prior research, it constructs a tracking module using a unified framework that incorporates convolution and attention as its core components. Our method effectively bridges the gap between the two calculation methods. It improves the ability to extract fundamental features, integrates past experience in the tracking field more effectively, while balancing local and global contextual information. The proposed tracker achieves competitive performance on 5 challenging short-term and long-term benchmarks and can run at real-time speed.\",\"PeriodicalId\":276778,\"journal\":{\"name\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINIT59027.2023.10212501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINIT59027.2023.10212501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前流行的跟踪框架优先考虑全局关系的建模,而忽略了局部特征提取的研究。本文介绍了一种将卷积和注意力集成到一个统一框架中的视觉目标跟踪新方法——CATrack。与以往的研究相比,本文构建了一个以卷积和注意力为核心组件的统一框架的跟踪模块。我们的方法有效地弥补了两种计算方法之间的差距。它提高了提取基本特征的能力,更有效地整合了过去在跟踪领域的经验,同时平衡了局部和全局上下文信息。所提出的跟踪器在5个具有挑战性的短期和长期基准上实现了具有竞争力的性能,并且可以以实时速度运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CATrack: Combining Convolutional and Attentional Methods for Visual Object Tracking
The current popular tracking frameworks prioritize the modeling of global relationships while neglecting research on local feature extraction. This paper introduces CATrack, a novel approach for visual object tracking that integrates convolution and attention into a unified framework. In contrast to prior research, it constructs a tracking module using a unified framework that incorporates convolution and attention as its core components. Our method effectively bridges the gap between the two calculation methods. It improves the ability to extract fundamental features, integrates past experience in the tracking field more effectively, while balancing local and global contextual information. The proposed tracker achieves competitive performance on 5 challenging short-term and long-term benchmarks and can run at real-time speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信