基于PSO-GA算法的AUV机械臂工作路径优化

Pengyu Cheng
{"title":"基于PSO-GA算法的AUV机械臂工作路径优化","authors":"Pengyu Cheng","doi":"10.1109/INCET57972.2023.10169957","DOIUrl":null,"url":null,"abstract":"The work path optimization of AUV manipulator based on PSO GA algorithm is a method to find the best work path of AUV manipulator. It is an extension of the original PSO GA algorithm, and uses the concept of pseudo Gaussian distribution to find a better solution under multiple local optimizations. The working path optimization of the underwater robot manipulator is to make the control of the underwater robot manipulator move along the working path with the minimum energy consumption. It is realized by using some mathematical techniques and algorithms. The main idea behind this technology is to find out the best point of the mobile underwater robot manipulator to minimize its total energy consumption. This technology is used for many purposes, such as motion planning, path planning and control design.. The main idea behind this algorithm is that if there are multiple local optima, the global optimal can be found by minimizing the total cost function of all local optima. This can be achieved by using Lagrange multiplication (LMM). In addition, this technology requires less computing power. In the actual working environment and experimental environment, the magnetic field interference may have an impact on the attitude parameters of AUV, which leads to the unsatisfactory control effect of AUV motion. In order to accurately measure the attitude of AUV system, this paper proposes an anti-jamming and fault-tolerant processing algorithm for MEMS inertial navigation system. This algorithm first estimates the signal residual, then dynamically adjusts the confidence level of local filter through the residual value, and finally fuses sensor signals with different working principles through the confidence level, which can significantly improve the stability and reliability of attitude feedback signals.","PeriodicalId":403008,"journal":{"name":"2023 4th International Conference for Emerging Technology (INCET)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Working Path Optimization of AUV Manipulator Based on PSO-GA Algorithm\",\"authors\":\"Pengyu Cheng\",\"doi\":\"10.1109/INCET57972.2023.10169957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work path optimization of AUV manipulator based on PSO GA algorithm is a method to find the best work path of AUV manipulator. It is an extension of the original PSO GA algorithm, and uses the concept of pseudo Gaussian distribution to find a better solution under multiple local optimizations. The working path optimization of the underwater robot manipulator is to make the control of the underwater robot manipulator move along the working path with the minimum energy consumption. It is realized by using some mathematical techniques and algorithms. The main idea behind this technology is to find out the best point of the mobile underwater robot manipulator to minimize its total energy consumption. This technology is used for many purposes, such as motion planning, path planning and control design.. The main idea behind this algorithm is that if there are multiple local optima, the global optimal can be found by minimizing the total cost function of all local optima. This can be achieved by using Lagrange multiplication (LMM). In addition, this technology requires less computing power. In the actual working environment and experimental environment, the magnetic field interference may have an impact on the attitude parameters of AUV, which leads to the unsatisfactory control effect of AUV motion. In order to accurately measure the attitude of AUV system, this paper proposes an anti-jamming and fault-tolerant processing algorithm for MEMS inertial navigation system. This algorithm first estimates the signal residual, then dynamically adjusts the confidence level of local filter through the residual value, and finally fuses sensor signals with different working principles through the confidence level, which can significantly improve the stability and reliability of attitude feedback signals.\",\"PeriodicalId\":403008,\"journal\":{\"name\":\"2023 4th International Conference for Emerging Technology (INCET)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference for Emerging Technology (INCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCET57972.2023.10169957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCET57972.2023.10169957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于粒子群遗传算法的AUV机械臂工作路径优化是一种寻找AUV机械臂最佳工作路径的方法。它是对原有PSO遗传算法的扩展,利用伪高斯分布的概念在多个局部优化下寻找更好的解。水下机器人机械手的工作路径优化就是使水下机器人机械手的控制以最小的能量消耗沿工作路径运动。它是利用一些数学技术和算法来实现的。该技术的主要思想是找出移动水下机器人机械手的最佳点,使其总能耗最小。该技术被用于许多目的,如运动规划,路径规划和控制设计。该算法的主要思想是,如果存在多个局部最优解,则通过最小化所有局部最优解的总代价函数来找到全局最优解。这可以通过使用拉格朗日乘法(LMM)实现。此外,该技术需要更少的计算能力。在实际工作环境和实验环境中,磁场干扰会对水下航行器的姿态参数产生影响,导致水下航行器运动控制效果不理想。为了准确测量水下航行器系统的姿态,本文提出了一种MEMS惯性导航系统的抗干扰容错处理算法。该算法首先对信号残差进行估计,然后通过残差值动态调整局部滤波器的置信度,最后通过置信度对不同工作原理的传感器信号进行融合,可以显著提高姿态反馈信号的稳定性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Working Path Optimization of AUV Manipulator Based on PSO-GA Algorithm
The work path optimization of AUV manipulator based on PSO GA algorithm is a method to find the best work path of AUV manipulator. It is an extension of the original PSO GA algorithm, and uses the concept of pseudo Gaussian distribution to find a better solution under multiple local optimizations. The working path optimization of the underwater robot manipulator is to make the control of the underwater robot manipulator move along the working path with the minimum energy consumption. It is realized by using some mathematical techniques and algorithms. The main idea behind this technology is to find out the best point of the mobile underwater robot manipulator to minimize its total energy consumption. This technology is used for many purposes, such as motion planning, path planning and control design.. The main idea behind this algorithm is that if there are multiple local optima, the global optimal can be found by minimizing the total cost function of all local optima. This can be achieved by using Lagrange multiplication (LMM). In addition, this technology requires less computing power. In the actual working environment and experimental environment, the magnetic field interference may have an impact on the attitude parameters of AUV, which leads to the unsatisfactory control effect of AUV motion. In order to accurately measure the attitude of AUV system, this paper proposes an anti-jamming and fault-tolerant processing algorithm for MEMS inertial navigation system. This algorithm first estimates the signal residual, then dynamically adjusts the confidence level of local filter through the residual value, and finally fuses sensor signals with different working principles through the confidence level, which can significantly improve the stability and reliability of attitude feedback signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信