热方程反问题的矩量法

M. Kawashita, Y. Kurylev, H. Soga
{"title":"热方程反问题的矩量法","authors":"M. Kawashita, Y. Kurylev, H. Soga","doi":"10.1201/9780429187841-6","DOIUrl":null,"url":null,"abstract":"In this paper we consider an inverse problem for the heat equation in a bounded domain. The uniqueness and reconstruction are studied in terms of some bilinear form on a product set of harmonic polynomials. This form is represented by the Dirichlet-Neumann map R which is the observation data.","PeriodicalId":441146,"journal":{"name":"Inverse problems and related topics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Moment Method on Inverse Problems for the Heat Equation\",\"authors\":\"M. Kawashita, Y. Kurylev, H. Soga\",\"doi\":\"10.1201/9780429187841-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider an inverse problem for the heat equation in a bounded domain. The uniqueness and reconstruction are studied in terms of some bilinear form on a product set of harmonic polynomials. This form is represented by the Dirichlet-Neumann map R which is the observation data.\",\"PeriodicalId\":441146,\"journal\":{\"name\":\"Inverse problems and related topics\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse problems and related topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429187841-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse problems and related topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429187841-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究有界区域内热方程的反问题。研究了调和多项式积集上的双线性形式的唯一性和重构。这种形式由狄利克雷-诺伊曼映射R表示,它是观测数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Moment Method on Inverse Problems for the Heat Equation
In this paper we consider an inverse problem for the heat equation in a bounded domain. The uniqueness and reconstruction are studied in terms of some bilinear form on a product set of harmonic polynomials. This form is represented by the Dirichlet-Neumann map R which is the observation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信