Audrey Lebon, Y. Dumont, F. Grognard, L. Mailleret
{"title":"植物-昆虫动力学中的植物补偿效应模拟","authors":"Audrey Lebon, Y. Dumont, F. Grognard, L. Mailleret","doi":"10.1109/PMA.2012.6524836","DOIUrl":null,"url":null,"abstract":"Modelling plant-pest interactions is not an obvious task since the involved processes are numerous and complex. We propose a minimal model based on trophic relations and the concept of plant compensation capacity. We only consider three main components in our system: the plant foliar biomass, the compensation capacity, and the pest population. We prove that there exist two threshold parameters, N1 and N2, and show that the system admits different equilibria, which are locally asymptotically stable or unstable, depending on the value of the previous threshold parameters. Finally, we summarize our theoretical results in a bifurcation diagram that allows to discuss possible control strategies to lower the impacts of the pest or even to obtain a better biomass yield.","PeriodicalId":117786,"journal":{"name":"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modelling plant compensatory effects in plant-insects dynamics\",\"authors\":\"Audrey Lebon, Y. Dumont, F. Grognard, L. Mailleret\",\"doi\":\"10.1109/PMA.2012.6524836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling plant-pest interactions is not an obvious task since the involved processes are numerous and complex. We propose a minimal model based on trophic relations and the concept of plant compensation capacity. We only consider three main components in our system: the plant foliar biomass, the compensation capacity, and the pest population. We prove that there exist two threshold parameters, N1 and N2, and show that the system admits different equilibria, which are locally asymptotically stable or unstable, depending on the value of the previous threshold parameters. Finally, we summarize our theoretical results in a bifurcation diagram that allows to discuss possible control strategies to lower the impacts of the pest or even to obtain a better biomass yield.\",\"PeriodicalId\":117786,\"journal\":{\"name\":\"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMA.2012.6524836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMA.2012.6524836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling plant compensatory effects in plant-insects dynamics
Modelling plant-pest interactions is not an obvious task since the involved processes are numerous and complex. We propose a minimal model based on trophic relations and the concept of plant compensation capacity. We only consider three main components in our system: the plant foliar biomass, the compensation capacity, and the pest population. We prove that there exist two threshold parameters, N1 and N2, and show that the system admits different equilibria, which are locally asymptotically stable or unstable, depending on the value of the previous threshold parameters. Finally, we summarize our theoretical results in a bifurcation diagram that allows to discuss possible control strategies to lower the impacts of the pest or even to obtain a better biomass yield.