基于人工神经网络的非线性负荷监测与分类

M. A. Stosovic, D. Stevanović, M. Dimitrijevic
{"title":"基于人工神经网络的非线性负荷监测与分类","authors":"M. A. Stosovic, D. Stevanović, M. Dimitrijevic","doi":"10.1109/TELSKS.2017.8246320","DOIUrl":null,"url":null,"abstract":"In this paper artificial neural networks are used for identification of nonlinear loads on the network, as one of the methods for non-intrusive load monitoring. Specific parameters of a group of the nonlinear loads are first measured, and then a neural network is used in order to identify which load, or group of loads, is active on the network. It is shown within an example that the task of loads identification can be done successfully.","PeriodicalId":206778,"journal":{"name":"2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Monitoring and classification of nonlinear loads based on artificial neural networks\",\"authors\":\"M. A. Stosovic, D. Stevanović, M. Dimitrijevic\",\"doi\":\"10.1109/TELSKS.2017.8246320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper artificial neural networks are used for identification of nonlinear loads on the network, as one of the methods for non-intrusive load monitoring. Specific parameters of a group of the nonlinear loads are first measured, and then a neural network is used in order to identify which load, or group of loads, is active on the network. It is shown within an example that the task of loads identification can be done successfully.\",\"PeriodicalId\":206778,\"journal\":{\"name\":\"2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELSKS.2017.8246320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2017.8246320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用人工神经网络对电网中的非线性负荷进行识别,作为非侵入式负荷监测的一种方法。首先测量一组非线性负载的特定参数,然后使用神经网络来识别网络上哪个负载或一组负载是活跃的。通过一个示例,可以成功地完成负载识别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring and classification of nonlinear loads based on artificial neural networks
In this paper artificial neural networks are used for identification of nonlinear loads on the network, as one of the methods for non-intrusive load monitoring. Specific parameters of a group of the nonlinear loads are first measured, and then a neural network is used in order to identify which load, or group of loads, is active on the network. It is shown within an example that the task of loads identification can be done successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信