具有并行处理能力的大规模最优控制问题的层次分解

T. Chang, Shi-Chung Chang, P. Luh
{"title":"具有并行处理能力的大规模最优控制问题的层次分解","authors":"T. Chang, Shi-Chung Chang, P. Luh","doi":"10.23919/ACC.1986.4789254","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to decompose a large scale optimal control problem into a hierarchical optimization problem, in which low level subproblems have much shorter time horizon. The initial and final states of each subproblem are chosen as coordination parameters to glue all subproblems together. In such a decomposition, the high level problem is a parameter optimization problem, and subproblems are completely decoupled so that they can be solved in parallel. It is shown that the decomposed two-level optimization problem is equivalent to the original problem. Moreover, the high level problem is a convex parameter optimization problem if the original problem has a convex cost function and linear system dynamics. A parallel processing algorithm based on the gradient method for the high level problem is presented. A numerical example is used to illustrate the ideas and demonstrate the feasibility of the approach.","PeriodicalId":266163,"journal":{"name":"1986 American Control Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Hierarchical Decomposition for Large Scale Optimal Control Problems with Parallel Processing Capability\",\"authors\":\"T. Chang, Shi-Chung Chang, P. Luh\",\"doi\":\"10.23919/ACC.1986.4789254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method to decompose a large scale optimal control problem into a hierarchical optimization problem, in which low level subproblems have much shorter time horizon. The initial and final states of each subproblem are chosen as coordination parameters to glue all subproblems together. In such a decomposition, the high level problem is a parameter optimization problem, and subproblems are completely decoupled so that they can be solved in parallel. It is shown that the decomposed two-level optimization problem is equivalent to the original problem. Moreover, the high level problem is a convex parameter optimization problem if the original problem has a convex cost function and linear system dynamics. A parallel processing algorithm based on the gradient method for the high level problem is presented. A numerical example is used to illustrate the ideas and demonstrate the feasibility of the approach.\",\"PeriodicalId\":266163,\"journal\":{\"name\":\"1986 American Control Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1986 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1986.4789254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1986 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1986.4789254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种将大规模最优控制问题分解为层次优化问题的新方法,其中低层子问题具有更短的时间范围。选择每个子问题的初始状态和最终状态作为协调参数,将所有子问题粘合在一起。在这种分解中,高层问题是一个参数优化问题,子问题是完全解耦的,可以并行求解。结果表明,分解后的两级优化问题等价于原问题。如果原问题具有凸代价函数和线性系统动力学,则高级问题为凸参数优化问题。提出了一种基于梯度法的高级问题并行处理算法。最后用一个数值算例说明了该方法的思想和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hierarchical Decomposition for Large Scale Optimal Control Problems with Parallel Processing Capability
This paper presents a new method to decompose a large scale optimal control problem into a hierarchical optimization problem, in which low level subproblems have much shorter time horizon. The initial and final states of each subproblem are chosen as coordination parameters to glue all subproblems together. In such a decomposition, the high level problem is a parameter optimization problem, and subproblems are completely decoupled so that they can be solved in parallel. It is shown that the decomposed two-level optimization problem is equivalent to the original problem. Moreover, the high level problem is a convex parameter optimization problem if the original problem has a convex cost function and linear system dynamics. A parallel processing algorithm based on the gradient method for the high level problem is presented. A numerical example is used to illustrate the ideas and demonstrate the feasibility of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信