新鲜的

Hyein Shin, Myeonggu Kang, Lee-Sup Kim
{"title":"新鲜的","authors":"Hyein Shin, Myeonggu Kang, Lee-Sup Kim","doi":"10.1145/3508352.3549345","DOIUrl":null,"url":null,"abstract":"A severe read disturbance problem degrades the inference accuracy of a resistive RAM (ReRAM) based deep neural network (DNN) accelerator. Refresh, which reprograms the ReRAM cells, is the most obvious solution for the problem, but programming ReRAM consumes huge energy. To address the issue, we first analyze the resistance drift pattern of each conductance state and the actual read stress applied to the ReRAM array by considering the characteristics of ReRAM-based DNN accelerators. Based on the analysis, we cluster ReRAM cells into a few groups for each layer of DNN and generate a proper refresh cycle for each group in the offline phase. The individual refresh cycles reduce energy consumption by reducing the number of unnecessary refresh operations. In the online phase, the refresh controller selectively launches refresh operations according to the generated refresh cycles. ReRAM cells are selectively refreshed by minimally modifying the conventional structure of the ReRAM-based DNN accelerator. The proposed work successfully resolves the read disturbance problem by reducing 97% of the energy consumption for the refresh operation while preserving inference accuracy.","PeriodicalId":367046,"journal":{"name":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re\\n <sup>2</sup>\\n fresh\",\"authors\":\"Hyein Shin, Myeonggu Kang, Lee-Sup Kim\",\"doi\":\"10.1145/3508352.3549345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A severe read disturbance problem degrades the inference accuracy of a resistive RAM (ReRAM) based deep neural network (DNN) accelerator. Refresh, which reprograms the ReRAM cells, is the most obvious solution for the problem, but programming ReRAM consumes huge energy. To address the issue, we first analyze the resistance drift pattern of each conductance state and the actual read stress applied to the ReRAM array by considering the characteristics of ReRAM-based DNN accelerators. Based on the analysis, we cluster ReRAM cells into a few groups for each layer of DNN and generate a proper refresh cycle for each group in the offline phase. The individual refresh cycles reduce energy consumption by reducing the number of unnecessary refresh operations. In the online phase, the refresh controller selectively launches refresh operations according to the generated refresh cycles. ReRAM cells are selectively refreshed by minimally modifying the conventional structure of the ReRAM-based DNN accelerator. The proposed work successfully resolves the read disturbance problem by reducing 97% of the energy consumption for the refresh operation while preserving inference accuracy.\",\"PeriodicalId\":367046,\"journal\":{\"name\":\"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Re 2 fresh
A severe read disturbance problem degrades the inference accuracy of a resistive RAM (ReRAM) based deep neural network (DNN) accelerator. Refresh, which reprograms the ReRAM cells, is the most obvious solution for the problem, but programming ReRAM consumes huge energy. To address the issue, we first analyze the resistance drift pattern of each conductance state and the actual read stress applied to the ReRAM array by considering the characteristics of ReRAM-based DNN accelerators. Based on the analysis, we cluster ReRAM cells into a few groups for each layer of DNN and generate a proper refresh cycle for each group in the offline phase. The individual refresh cycles reduce energy consumption by reducing the number of unnecessary refresh operations. In the online phase, the refresh controller selectively launches refresh operations according to the generated refresh cycles. ReRAM cells are selectively refreshed by minimally modifying the conventional structure of the ReRAM-based DNN accelerator. The proposed work successfully resolves the read disturbance problem by reducing 97% of the energy consumption for the refresh operation while preserving inference accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信