性能调优的可视化和分析平台

H. M. D. Eranjith, I. D. Fernando, G. Fernando, W. C. M. Soysa, V. S. D. Jayasena
{"title":"性能调优的可视化和分析平台","authors":"H. M. D. Eranjith, I. D. Fernando, G. Fernando, W. C. M. Soysa, V. S. D. Jayasena","doi":"10.1109/MERCON.2016.7480118","DOIUrl":null,"url":null,"abstract":"With a framework like OpenTuner, one could build domain-specific multi-objective program auto-tuners and gain significant performance improvements. But explaining why and interpreting the results are often hard, mainly due to the large number of parameters and the inability to figure out how each parameter affects the performance improvement. We have a solution that can explain the performance improvements by identifying key parameters while providing better insights on the tuning process. Our tool uses machine learning techniques to identify parameters which account for a significant performance improvement. A user could utilize different methods provided in the tool to further experiment and verify the accuracy of such findings. Further, our tool uses multidimensional scaling to display all the configurations in a two dimensional graph. This interface allows users to analyze the search space closely and identify clusters of configurations with good or bad performance. It also provides real-time information of tuning process which would help users to optimize the tuning process.","PeriodicalId":184790,"journal":{"name":"2016 Moratuwa Engineering Research Conference (MERCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A visualization and analysis platform for performance tuning\",\"authors\":\"H. M. D. Eranjith, I. D. Fernando, G. Fernando, W. C. M. Soysa, V. S. D. Jayasena\",\"doi\":\"10.1109/MERCON.2016.7480118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a framework like OpenTuner, one could build domain-specific multi-objective program auto-tuners and gain significant performance improvements. But explaining why and interpreting the results are often hard, mainly due to the large number of parameters and the inability to figure out how each parameter affects the performance improvement. We have a solution that can explain the performance improvements by identifying key parameters while providing better insights on the tuning process. Our tool uses machine learning techniques to identify parameters which account for a significant performance improvement. A user could utilize different methods provided in the tool to further experiment and verify the accuracy of such findings. Further, our tool uses multidimensional scaling to display all the configurations in a two dimensional graph. This interface allows users to analyze the search space closely and identify clusters of configurations with good or bad performance. It also provides real-time information of tuning process which would help users to optimize the tuning process.\",\"PeriodicalId\":184790,\"journal\":{\"name\":\"2016 Moratuwa Engineering Research Conference (MERCon)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Moratuwa Engineering Research Conference (MERCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MERCON.2016.7480118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2016.7480118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用像OpenTuner这样的框架,可以构建特定于领域的多目标程序自动调谐器,并获得显著的性能改进。但是解释原因和解释结果通常是困难的,主要是因为有大量的参数,并且无法弄清楚每个参数如何影响性能改进。我们有一个解决方案,可以通过识别关键参数来解释性能改进,同时更好地了解调优过程。我们的工具使用机器学习技术来识别能够显著提高性能的参数。用户可以利用工具中提供的不同方法进一步实验并验证这些发现的准确性。此外,我们的工具使用多维缩放在二维图中显示所有配置。该界面允许用户仔细分析搜索空间,并识别性能良好或较差的配置集群。它还提供了调优过程的实时信息,帮助用户优化调优过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A visualization and analysis platform for performance tuning
With a framework like OpenTuner, one could build domain-specific multi-objective program auto-tuners and gain significant performance improvements. But explaining why and interpreting the results are often hard, mainly due to the large number of parameters and the inability to figure out how each parameter affects the performance improvement. We have a solution that can explain the performance improvements by identifying key parameters while providing better insights on the tuning process. Our tool uses machine learning techniques to identify parameters which account for a significant performance improvement. A user could utilize different methods provided in the tool to further experiment and verify the accuracy of such findings. Further, our tool uses multidimensional scaling to display all the configurations in a two dimensional graph. This interface allows users to analyze the search space closely and identify clusters of configurations with good or bad performance. It also provides real-time information of tuning process which would help users to optimize the tuning process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信